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Summary 
 
Most modern nodal methods in use by the reactor vendors and utilities are based on the 
generalized equivalence theory (GET) that uses homogenized cross sections and flux 
discontinuity factors.  These homogenized parameters, referred to as infinite medium 
parameters, are precomputed by performing single bundle fine-mesh calculations with 
zero current boundary conditions.  It is known that for configurations in which the node-
to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium 
parameters could lead to large errors in the nodal solution.  This would be the case for 
highly heterogeneous core configurations, typical of modern reactor core designs. 
 
The main objective of this project was to develop a new high-order cross section 
homogenization method based on the boundary condition perturbation theory to improve 
the accuracy of nodal diffusion methods within the context of the GET.  The new 
homogenization method corrects the homogenized parameters and discontinuity factors 
for the effect of the core environment (node-to-node leakage), to an arbitrary order of 
accuracy, by expanding them in terms of the node surface current-to-flux ratios.  The 
method utilizes two adjoint functions to determine the expansion coefficients.  Since 
these adjoint functions are solutions to the infinite medium problem (zero current-to-flux 
ratio), the expansion coefficients can be precomputed and included with the standard 
homogenization parameters for use by a nodal code.  As a result, the nodal method has 
the capability of achieving an arbitrarily accurate solution by efficiently updating 
(correcting) the homogenized parameters, including the discontinuity factor, as it 
computes the node interface current-to-flux ratio.  The level of accuracy for the high-
order corrected reactor flux solution is close to that of the fine-mesh calculation, which 
would be computationally expensive and impractical to determine directly at the core 
level. 
 
The numerical implementation of the homogenization method required the development 
of a fine-mesh lattice code capable of providing, along with the standard homogenized 
parameters, the two adjoint functions (the adjoint flux and an adjoint Green’s function) as 
additional homogenization parameters.  When going from one-group to multigroup, the 
forms of the equations to be solved and of the expressions to be evaluated become more 
complex, due to energy coupling between groups.  The method was first tested and 
implemented for simple problems (one-group, 1-D geometry).  The work was then 
extended to more complex (two-group 1-D and then 2-D geometry) problems. The main 



difficulty requiring a substantial effort was the numerical implementation of the solution 
method for precomputing the Green’s function.  A fine-mesh lattice code with the 
capability mentioned above was developed for each of the three sets of problems: one-
speed 1-D, two-group 1-D and two-group 2-D.     
 
In this project, it was shown that the perturbation expansion series for the homogenized 
cross sections and discontinuity factors converge in a multigroup case.  This is new in 
that it has not been shown before in the literature.  The benchmark configurations 
consisted of two types of BWR assemblies in slab geometry for the one-dimensional case 
and different types of assemblies in the HAFAS core for the two-dimensional case.  The 
benchmark configurations were analyzed for various magnitudes of the perturbation in 
the boundary condition.  It was shown that the perturbation method achieves an excellent 
accuracy: the reference homogenized cross sections and discontinuity factors are almost 
exactly reproduced.   
 
The new homogenization method was numerically implemented at the nodal level, in the 
context of the GET, for one-speed 1-D, as well as for two-group 1-D configurations.  For 
each of these two types of configurations, a finite-difference coarse-mesh code with a 
bilinear intra-nodal flux shape was developed.  As compared to a standard nodal code for 
solving the nodal diffusion equations, which has two levels of calculation (source 
iteration and flux iteration), this code has an additional level (iteration) in which the the 
homogenized parameters are corrected. Nodal equations were developed for 
implementing the homogenization method at the nodal level for two-group 2-D problems, 
and their numerical implementation is in progress.  The code for solving the nodal 
equations in this case is based on a transverse integrated method with a nodal expansion 
used for solving the transverse-integrated equations.  The associated system of equations 
is solved by employing a non-linear iterative strategy.  For the 2-D case some difficulty 
might arise in determining a surface-dependent boundary condition (current-to-flux ratio) 
from node-averaged quantities.  Note that the Green’s function is not constant at the node 
interface.  As a first approximation, the expansion parameter in the 2-D case would be 
taken as an average over the node surface, which is consistent with the GET assumption. 
 
The testing of the new homogenization method at the nodal level (for one- and two-group 
one-dimensional problems) was performed on five benchmark configurations typical of a 
BWR, from mildly to highly heterogeneous.  Three of these five benchmarks, in which 
each assembly is of the GE-9 bundle design, were newly developed because of the need 
for more realistic benchmark configurations.  It is anticipated that the technical 
community in reactor physics and math and computations will benefit from the new 
benchmarks developed in this study.  It was shown that the homogenization method 
provides excellent results.  For all of the analyzed configurations, the node-integrated 
flux is within 1.2% of the assembly reference (fine-mesh) flux in all nodes for each 
group.  There is a significant improvement from the zeroth order case (standard GET), in 
which the node-averaged flux has a large error (e.g., up to 8% in group 1 and up to 14% 
in group 2 for some of the analyzed configurations).  It was also shown that the 
reconstructed fine-mesh flux (or equivalently the power distribution) in the core 
approximates the reference value very well.  The reference flux distribution is almost 



reproduced by the third order correction. 
 
The funding of this project enabled Georgia Tech to maintain a productive research 
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I. INTRODUCTION 
 
Nodal methods based on equivalence theory1 use for each node (fuel assembly) 
homogenized cross sections and discontinuity factors that are determined by performing 
single bundle fine-mesh calculations with no net neutron leakage (zero current or current-
to-flux ratio boundary condition).  These are referred to as infinite medium homogenized 
parameters.  It is known that for configurations in which the node-to-node neutron 
leakage is large, the use of infinite medium parameters, especially the discontinuity 
factor, could lead to large errors in the nodal solution2.  This would be the case for highly 
heterogeneous core configurations of modern reactor designs as well as small reactor 
cores (in terms of mean free path). 
 
The main objective of this project is to develop a new homogenization technique with a 
high-order of accuracy to account for the node-to-node leakage effect in the context of 
generalized equivalence theory (GET) and substantially improve the accuracy of nodal 
methods.  This improvement is achieved through the application of a high-order 
boundary condition perturbation method in diffusion theory to expand the homogenized 
parameters as a function of the boundary (node interface) current-to-flux ratio.  The 
perturbation method utilizes two adjoint functions to determine the expansion coefficients 
up to an arbitrary (nth) order of accuracy.  Since the adjoint functions are solutions to the 
infinite medium problem (zero current-to-flux ratio), the expansion coefficients can be 
precomputed and included with the standard homogenization parameters for use by the 
nodal code.  The method allows for the reconstruction of the fuel pin flux and power 
distributions without requiring a priori knowledge of any core parameters such as keff.  As 
a result, the nodal method has the capability of achieving an arbitrarily accurate solution 
by efficiently updating (correcting) the homogenized parameters, including the 
discontinuity factor, as it computes the node interface current-to-flux ratio.  
 
The new boundary condition perturbation method developed in this work is presented in 
chapter II. Also included in this chapter is a discussion of the approaches used in solving 
the problems encountered with the numerical implemention of the method.  Due to the 
energy coupling when going from one-group to multigroup, the equations whose 
solutions are required to evaluate the expansion coefficients have a more complicated 
form than for the one-group case.  The numerical solution method for the required 
multigroup Green’s function becomes substantially more complicated.  The benchmark 
configurations used to test the method are presented in chapter III.  Particular attention is 
given to the description of the new benchmark problems developed in this project 
because of the need for more realistic test configurations.  The results for the benchmark 
problems are shown and discussed in chapter IV.   The summary and conclusions are 
presented in chapter V. 
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II. METHOD 
 
 
2.1. Basic Equations 
 
The high-order boundary condition perturbation method3 estimates the change in the 
solution of a reactive system due to a change in the boundary condition to an arbitrary 
order, in the diffusion approximation.  The formalism, which was derived for a general 
case, is presented here in its multigroup form.  It starts from the steady-state diffusion 
eigenvalue equation for an initial (unperturbed) state of the system:  
 

( ) ( ) GgVxxFxH gggg ...,1,,,00,0 =∈= ϕλϕ                                                           (2-1) 
 

where gH  is the diffusion operator (accounting for leakage, absorption and in-scattering), 
F is the production operator, λ0 is the eigenvalue, and 0ϕ  is the initial flux.  The 
unperturbed (initial) flux is normalized such that its integral over ( x ) is unity.  The 
boundary condition associated with Eq. (2-1) is:  
 

( ) ( ) ( ) ( ) GgVxxxbxnxa gggg ...,1,0ˆ ,0,0,0,0 =∂∈=+∇⋅ ϕϕ                                    (2-2) 

 
with x  the spatial variable, and n̂  the outward unit normal.  The parameter 0,gb  becomes 
the current-to-flux ratio in group g at the boundary when 0,ga  is taken as the diffusion 
coefficient in that group.   
 
The operators gH  and gF  are defined by: 
 

( ) ( ) ( )xxxDH
g

gsgggg ∑
=

−+∇−∇=
2

1'
'σσ                                                                           (2-3) 

 

( ) ( )∑
=

=
2

1'
'

g
fggg xxF νσχ                                                                                                     (2-4) 

 
where gD , gσ , and gχ are the diffusion coefficient, the total cross section, and the 
fission spectrum in group g; gsg 'σ is the scattering cross section from group g’ to group g, 
and fgνσ is the product of the number of neutrons per fission and the fission cross section 
in group g.   
 
The adjoint flux for the unperturbed state is given by: 
 

( ) ( ) GgVxxFxH gggg ...,1,*
,0

**
0

*
,0

* =∈= ϕλϕ                                                           (2-5) 
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with the corresponding boundary condition: 
 

( ) ( ) ( ) ( ) GgVxxxbxnxa gggg ...,1,0ˆ *
,0,0

*
,0,0 =∂∈=+∇⋅ ϕϕ                                    (2-6) 

 
The adjoint operators *

gH and *
gF  are defined by: 

 

( ) ( ) ( )xxxDH
g

sggggg ∑
=

−+∇−∇=
2

1'
'

* σσ                                                                            (2-7) 

 

( ) ( )∑
=

=
2

1'
'

*

g
gfgg xxF χνσ                                                                                                    (2-8) 

 
For a perturbation in the boundary condition of the form: 
 

( ) ( ) ( ) ( )( ) ( )0, 0, 0, 1, 0,ˆ 0,g g g g ga x n x b x b x x x Vϕ ε ϕ⋅∇ + + = ∈∂                                  (2-9) 
 

the eigenvalue equation (2-1) is written as: 
 

( ) ( ) , , 1...,g g g gH x F x x V g Gϕ λ ϕ= ∈ =                                                           (2-10) 
 
where λ is the perturbed eigenvalue and ϕ  is the perturbed flux normalized to unity.  It is 
assumed that the perturbed flux and eigenvalue can be expanded in terms of a smallness 
parameter ε as: 
 

( )1
2

2
10

+++⋅⋅⋅++= n
n

n o ελελεελλλ                                                                         (2-11) 
 

( )1
2

2
10

++⋅⋅⋅++= n
n

n o εϕεϕεϕεϕϕ                                                                          (2-12) 
 

These expansions are used in equation (2-10) and the expansion coefficients are obtained, 
by equating the terms with the same power of ε , as functionals of the flux.  The high-
order corrections for eigenvalue and flux in Eqs. (2-11) and (2-12) are calculated based 
on the solutions for the forward and adjoint flux of the initial (unperturbed) state, and a 
Green’s function defined by the equation: 
 
( ) ( ) ( ) ( ) 2,1,,, 0,000

*
0

* =∈−−=Ψ− hgVxxxxxxFH hghghgg ϕδδλ                       (2-13) 
 
with the boundary condition 
 

( ) ( ) ( ) ( ) 2,1,,0,,ˆ 0,00,0 =∂∈=Ψ+Ψ∇⋅ hgVxxxxbxxnxa ghgghg                           (2-14) 
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The symbol δgh in (2-9) is the Kronecker function defined by: 
 





≠
=

=
gh
gh

gh ,0
,1

δ                                                                                                              (2-15) 

   
The Green’s function is required to satisfy the following uniqueness condition: 
 

( ) ( ) VxxExFExx ∈=Ψ 000 ,,0,,, ϕ                                                                       (2-16) 
 
The brackets in Eq. (2-16) stand for scalar product over the phase-space ( Ex, ). 
 
The expressions of the high-order corrections for flux and eigenvalue are: 
 

∑

∑

=

== 2

1
,0

*
,0

2

1
,0

*
,0

1

g
ggg

sg
ggg

F ϕϕ

ϕγϕ
λ                                                                                                (2-17-a) 

( )

∑

∑

=

=

−
= 2

1
,0

*
,0

2

1
,1

*
,01,1

*
,0

2

g
ggg

g
gggsggg

F

F

ϕϕ

ϕϕλϕγϕ
λ                                                                     (2-17-b) 

( )
2,2

1
,0

*
,0

2

1
,1

*
,01,2

*
,02,1

*
,01,1

*
,0

>
−⋅⋅⋅−−

=

∑

∑

=

=
−−−−

n
F

FFF

g
ggg

g
gggngngggnggsgngg

n

ϕϕ

ϕϕλϕϕλϕϕλϕγϕ
λ  

                                                 (2-17-c) 
 

( ) ( ) ( ) 2,1,,
2

1
,000,1 =Ψ−= ∑

=

hxxxx
sg

hgghh ϕγϕ                                                       (2-18-a) 

( ) ( ) ( ) ( ) ( ) 2,1,,,
2

1
,10

2

1
,1010,2 =Ψ−Ψ= ∑∑

==

hxxxxFxxx
g

shggh
g

hgghh ϕγϕλϕ             (2-18-b) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2,1,,,

,,

2

1
,10

2

1
,101

2

1
,202

2

1
,1010,

=Ψ−Ψ+

⋅⋅⋅Ψ+Ψ=

∑∑

∑∑

=
−

=
−

=
−

=
−

hxxxxFxx

xFxxxFxxx

g
shnggh

g
hgghn

g
hnggh

g
hngghhn

ϕγϕλ

ϕλϕλϕ
      (2-18-c) 

 
The brackets in the above expressions stand for scalar products over the volume, the 
subscript s outside the brackets indicating that the integration is over the boundary region 
of the volume.  The parameter γg is the perturbation of the boundary current-to-flux ratio 
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for group g, *
,0 gϕ (x) is the adjoint flux in group g for the initial state, and gk ,ϕ (x) is the 

kth-order flux in group g.  
 
In reference 3 it is shown that ratios of arbitrary functionals of the flux solution can be 
expanded in terms of the smallness parameter, similar to the expansions for the 
eigenvalue and flux Eqs. (2-11) and (2-12), respectively.  This result was used to 
homogenize phase-space parameters such as a cross section, which can be defined as: 

      
( )1

,,2
2

,1,0
+++⋅⋅⋅++= n

gn
n

gggg o εσεσεεσσσ                                                              (2-19) 
 
with the expansion coefficients given by: 
 

( ) ( )
( )

gx

gx
g Ex

ExEx

,0

,0
,0 ,

,,

ϕ

ϕσ
σ =                                                                                       (2-20-a) 

 
( ) ( ) ( )

( )
gx

gxggx
g Ex

ExExEx

,0

,1,0,1
,1 ,

,,,

ϕ

ϕσϕσ
σ

−
=                                                           (2-20-b) 

 
( ) ( ) ( ) ( )

( )
gx

gxggxggx
g Ex

ExExExEx

,0

,1,1,2,0,2
,2 ,

,,,,

ϕ

ϕσϕσϕσ
σ

−−
=                            (2-20-c) 

 
( ) ( ) ( ) ( )

( )
gx

gxgngxnggxn
gn Ex

ExExExEx

,0

,1,1,,0,
, ,

,,,,

ϕ

ϕσϕσϕσ
σ

−⋅⋅⋅−−
=                      (2-20-d) 

 
The subscript x  outside the brackets in the above equations stands for integration over all 
space, and the subscript g means integration over energy from Eg-1 to Eg. 
 
In the multigroup case, the three equations (for the forward flux, the adjoint flux, and 
Green’s function of the unperturbed state of the system) whose solutions are required to 
evaluate the expansion coefficients for flux, eigenvalue, and homogenized cross-section 
have a more complicated form than for the one-group case, due to energy coupling 
between groups.  The numerical solution method for the multigroup Green’s function 
becomes substantially more complicated then in the one-group case.  The method for the 
Green’s function for the two-group case is presented below. 
 
 
2.2. Method for the Green’s function in two-group 
 
The main difficulty when extending the method to two-group is in obtaining the solution 
for the Green’s function ( )0, xxghΨ , which in two-group 1-D becomes a vectorial 
function, whereas in one-group 1-D is a scalar function.  For fixed values of the spatial 
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variables x  and 0x , there are four components (equal to the square of the number of 
groups) of the function ( )0, xxghΨ  which need to be determined, and therefore four 
coupled equations, compared to only one equation in the one-group case.  By writing Eq. 
(2-13) for the two-group (g,h=1,2) case, one gets the following four, two by two coupled, 
equations: 
 

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( ) ( ) ( )01,0002121012

01111011

,

,

xxxxxxxx

xxxxxxD

fs

fr

ϕδχνσλσ

χνσλσ

−−=Ψ+

−Ψ−+∇∇−
                    (2-21-a)  

 
( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( ) ( )01,001112021

02122022

,

,

xxxxxx

xxxxxxD

fs

fr

ϕχνσλσ

χνσλσ

−=Ψ+

−Ψ−+∇∇−
                                    (2-21-b) 

 
( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( ) ( )02,002221012

01211011

,

,

xxxxxx

xxxxxxD

fs

fr

ϕχνσλσ

χνσλσ

−=Ψ+

−Ψ−+∇∇−
                                   (2-21-c) 

 
( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( ) ( ) ( )02,0001212021

02222022

,

,

xxxxxxxx

xxxxxxD

fs

fr

ϕδχνσλσ

χνσλσ

−−=Ψ+

−Ψ−+∇∇−
                    (2-21-d) 

 
where rσ  is the removal cross section.  Equations (2-21-a) and (2-21-b) constitute a 
linear system for the unknowns ( )011 , xxΨ  and ( )021 , xxΨ , whereas Eqs. (2-21-c) and (2-
21-d) constitute a similar system for ( )012 , xxΨ  and ( )022 , xxΨ .  By discretizing the 
equations in slab geometry (integrating over the x variable), one gets two systems of 
matrix equations with unknowns X1, X2, Y1, and Y2, as shown below: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )




−=−
−=−

CjcjXBjXA
CjcjDjXBjXA

11222

12111                                                                             (2-22) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )



=−
−=−

CjcjYBjYA
CjcjDjYBjYA

21222

22111                                                                               (2-23) 

 
The system (2-22) corresponds to Eqs. (2-20-a) and (2-20-b), whereas the system (2-23) 
corresponds to Eqs. (2-21-c) and (2-21-d).  A1 and A2 are NxN tridiagonal matrices, B1 
and B2 are NxN diagonal matrices, D, C, X1, X2, Y1, and Y2 are N- component vectors, 
and c1(j) and c2(j) are constants, with j as a mesh index for x0 (j=1,..,N).   
 

( ) ( ) ( ) ( ) ( )[ ]jNjijjjX T ,,,2,,1 111111111 Ψ⋅⋅⋅Ψ⋅⋅⋅ΨΨ=                                                      (2-24) 
 

( ) ( ) ( ) ( ) ( )[ ]jNjijjjX T ,,,2,,1 212121212 Ψ⋅⋅⋅Ψ⋅⋅⋅ΨΨ=                                                    (2-25) 
 

( ) ( ) ( ) ( ) ( )[ ]jNjijjjY T ,,,2,,1 121212121 Ψ⋅⋅⋅Ψ⋅⋅⋅ΨΨ=                                                      (2-26) 
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( ) ( ) ( ) ( ) ( )[ ]jNjijjjY T ,,,2,,1 222222222 Ψ⋅⋅⋅Ψ⋅⋅⋅ΨΨ=                                                     (2-27) 

 
( ) [ ]Njijjj

T jD δδδδ ⋅⋅⋅⋅⋅⋅= 21 ,                                                                                        (2-28) 
 

( ) [ ]Ni
T xxxxjC ∆⋅⋅⋅∆⋅⋅⋅∆∆= 21,                                                                                   (2-29) 

 
The components of the vector C are the mesh lengths, and those of the vector D are 
Kronecker functions (see Eqs. (2-15)).  The diagonal coefficients for matrices B1 and B2 
are given by: 
 

Nib

Nib
i
s

ii
fii

i
s

ii
fii

⋅⋅⋅=+=

⋅⋅⋅=+=

,1,

,1,

21120
2

12210
1

σχνσλ

σχνσλ
                                                                           (2-30) 

 
The nonzero coefficients of matrices A1 and A2 are defined by: 
 

( )( )
( ) ( ) Ni

DD
DDa

i
i

i
i

i
i

i
i

ii ⋅⋅⋅=
∆+∆
∆∆

−=
−

−
−

−

− 2,
//
//2

1
1

11

1
1

111
,1  

( )( )
( ) ( ) 11,

//
//2

1
1

11

1
1

111
1, −⋅⋅⋅=

∆+∆
∆∆

−=
+

+
+

+

+ Ni
DD
DDa

i
i

i
i

i
i

i
i

ii                                                          (2-31) 

 ( ) 12,1101
1

1,
1

,1
1
, −⋅⋅⋅=−∆++= +− Niaaa i

f
i
riiiiiii χνσλσ  

 
( )( )

( ) ( ) Ni
DD
DDa

i
i

i
i

i
i

i
i

ii ⋅⋅⋅=
∆+∆
∆∆

−=
−

−
−

−

− 2,
//
//2

1
1

22

1
1

222
,1  

( )( )
( ) ( ) 11,

//
//2

1
1

22

1
1

222
1, −⋅⋅⋅=

∆+∆
∆∆

−=
+

+
+

+

+ Ni
DD
DDa

i
i

i
i

i
i

i
i

ii                                                        (2-32) 

( ) 12,2202
2

1,
2

,1
2
, −⋅⋅⋅=−∆++= +− Niaaa i

f
i
riiiiiii χνσλσ     

 
The constants c1 and c2 are given by: 
 
( ) ( )jjc 1,01 ϕ=                                                                                                               (2-33) 
( ) ( )jjc 2,02 ϕ=                                              

 
The coefficients for which the expressions are not shown in the above equations are those 
that correspond to boundary meshes (i=1,N). These expressions cannot be written for a 
general case unless the boundary condition is specified.  The discretization of Eqs. (2-21) 
is presented in more detail in Appendix A.  
 
The systems (2-22) and (2-23) need to be solved for each j=1,2,…N.  In order to do this, 
they are written in a compact form, as shown below: 
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( )
( )

( ) ( ) 







−








=
















−

−
C
C

jc
jD

jX
jX

AB
BA

1
2

1

22

11

0
                                       (2-34) 

 
( )
( )

( ) ( ) 







−








=
















−

−
C
C

jc
jD

jY
jY

AB
BA

2
2

1

22

11

0
                                      (2-35) 

 
or equivalently as: 
 

( ) ( ) ( ) 211 VjcjVjAX −=                                            (2-36) 
 

( ) ( ) ( ) 221 VjcjVjAY −=                                            (2-37) 
 
In the above equations A is a 2N x 2N band matrix, and X,Y,V1 and V2 are 2N-
component vectors.  In solving Eqs. (2-34) and (2-35) one must account for the 
uniqueness condition (2-16), which in two-group is expressed by the two following 
equations: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,, ',0

2

1'
'2021',0

2

1'
'1011 =Ψ+Ψ ∑∑

== x

g
g

fgg
g

fg xxxxxxxxxx ϕνσχϕνσχ            (2-38) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,, ',0

2

1'
'2022',0

2

1'
'1012 =Ψ+Ψ ∑∑

== x

g
g

fgg
g

fg xxxxxxxxxx ϕνσχϕνσχ            (2-39) 

 
By discretizing the Eqs. (2-38) and (2-39) in slab geometry one gets: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Njiiijiiiiji i

N

i
g

g
fgg

g
fg ...,1,0,,

1
',0

2

1'
'221',0

2

1'
'111 ==∆








Ψ+Ψ∑ ∑∑

= ==

ϕνσχϕνσχ (2-40) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Njiiijiiiiji i

N

i
g

g
fgg

g
fg ...,1,0,,

1
',0

2

1'
'222',0

2

1'
'121 ==∆








Ψ+Ψ∑ ∑∑

= ==

ϕνσχϕνσχ (2-41) 

 
The subscripts i and j are mesh indices for x and 0x , i∆ is the length of mesh i, and N is 
the total number of meshes.  Equation (2-40) and the system (2-34) have as unknowns the 
components of the adjoint Green’s function ( )jigh ,Ψ  for which g=1,2 and h=1.  Equation 
(2-41) and the system (2-35) have as unknown the components of the adjoint Green’s 
function ( )jigh ,Ψ  for which g=1,2 and h=2. 
 
 Two approaches have been followed to solve for Green’s function.  Let’s consider the 
system (2-34) with the corresponding Eq. (2-40) expressing the uniqueness condition.  
The first approach was to consider Eq. (2-40) as an additional equation of the system (2-
34). The resulting system is overdetermined: 
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                                                                  333 bxA =                                                     (2-42) 
 
where 3A is a (2N+1) by 2N matrix, and 3x and 3b  are (2N+1)-length vectors.  The 
system (2-42) can be solved by using a least square method, which consists of 
minimizing the square Euclidian norm: 
 
                                                   333

2

2
, xAbrrrr T −==                                 (2-43) 

 
The procedures used to minimize (2-43) involve the reduction of the matrix 3A to various 
canonical forms via orthogonal transformations4  Here a QR factorization of 3A method 
has been used, which consists of seeking a (2N+1) by (2N+1) orthogonal matrix Q such 
that  
 

                                                              







=

03

R
QA                                                      (2-44) 

 
where R  is a 2N by 2N upper triangular matrix.  The factorization was performed by 
using a routine from the IMSL MATH/LIBRARY 5.  The solution obtained for Eq. (2-42) 
was not accurate enough for the purpose of the present work.  The residuals (components 
of  333 xAbr −= ) were not very small compared to the components of the right term 3b . 
 
The second approach used to solve for Green’s function is the following: for each 0x (j 
from 1 to N), the system (2-34) is solved by replacing the jth line with Eq. (2-40) for the 
same j (expressing the uniqueness condition for that particular 0x ).  The system (2-35) is 
solved in a similar manner, but in conjunction with Eq. (2-41).  Since the resulting 
systems of equations are ill-conditioned, standard methods cannot be used for solving 
them.  The condition number is of the order 103 – 104.  Here a singular value 
decomposition method (SVD) 4 is used for obtaining the solution.  The SVD method for 
solving a linear system ( bAx = ), with A  a 2N by 2N real nonsingular matrix, is based 
on the decomposition: 
 
                                                                TVUA Σ=                                                     (2-45) 
  

where U  and V  are orthogonal matrices, and Σ  is a diagonal matrix.  The elements on 
the diagonal of Σ  are called singular values of the matrix A: 
 
                                                      0... 221 ≥≥≥≥ Nσσσ                                            (2-46) 
 
They can be used to get an estimation of the condition number, as a ratio of the largest to 
the smallest of the components. 
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2.3. High-order correction of the homogenized parameters 
 
Based on the high-order boundary condition perturbation theory (equations in section 
2.1), the high-order cross section homogenization method expands the nodal parameters 
in terms of the node surface current-to flux ratio.  The procedure of correcting the 
homogenized parameters in a nodal calculation is as follows: 

− The nodal calculation is performed by using the infinite medium homogenized 
parameters (zero current boundary condition), and the solution is used to calculate 
the current-to-flux ratio (γ) at each node interface  

− This ratio is used as a perturbation of the boundary condition in the high-order 
boundary condition formalism that evaluates the high-order correction for the 
homogenized parameters in each node (see Eqs 2-12.) 

− The nodal calculation is redone with the corrected homogenized parameters, and 
new γ’s are determined 

− The iteration continues until convergence is achieved 
 
The calculation of the corrections for the homogenized parameters is decoupled from the 
nodal calculation.  The corrections for a particular node are evaluated based on 
precomputed data for each assembly type: the forward and ajoint flux distribution of the 
infinite-medium calculation for that assembly, and the solution of the corresponding 
Green’s function defined by Eq. 2-7.  The only data provided by the nodal calculation is 
the updated value of the current-to-flux ration at the node interface.  
 
2.3.1 One-dimensional configurations 
 
A nodal diffusion code with a bilinear intra-nodal flux shape and discontinuous flux 
across the node interface was developed in conjunction with the high-order cross section 
homogenization method, for each of the one-group and two-group problems.  The 
discretization of the nodal equations is presented in Appendix B.  
 
The initial (zeroth order) nodal parameters are the standard GET homogenized cross 
sections and discontinuity factors, determined from infinite medium single node 
calculations for each assembly type.  The standard discontinuity factor on each side of a 
nodal interface is defined as the ratio of the heterogeneous flux (that is continuous at the 
interface) to the homogeneous flux on each side of the interface.  It is calculated as:  

 

im

k
imkf

ϕ
ϕ

=                                                                                                                     (2-47) 

where kχ is the standard discontinuity factor for face k of the node,  k
imϕ and imϕ are the 

surface-averaged flux on face k and the node-averaged flux from infinite medium 
calculations, respectively.   
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For the nodal calculations, the discontinuity factor in group g on face k of the node can be 
written in terms of its infinite medium approximation χg

k as 2: 
 

k
g

gk
g

k
gf

φ
φ

χ=                                                                                                                  (2-48) 

 
where gφ and k

gφ represent the node-averaged flux in group g and the average flux on face 
k in group g from the nodal calculations, respectively.  The so-called heterogeneous 
discontinuity factor χg

k is calculated as: 
 

( )

( )
( )

( )1
,

2
,2

2
,1,0

1
,,2

2
,1,0

3

2

+

+

++⋅⋅⋅+++

++⋅⋅⋅+++
==

∫

∫
n

gngggggg

n
sgn

n
gsggsggsg

V
g

S
g

k
g o

o

xxd

xxd
k

εϕγϕγϕγϕ

εϕγϕγϕγϕ

ϕ

ϕ

χ              (2-49) 

 
where gγ is the current-to-flux ratio in group g for interface k of the node.  gγ  is 
calculated as 2:   
 

k
g

k
g

k
gk

g f
J
ϕ

γ =                                                                                                                   (2-50) 

 
where k

gJ is the average current for group g on face k, determined from the nodal 
calculation.  
 
The convergence criteria used for the iterative nodal calculations are the following:    

• The change in the average flux in each node (mesh) and for each group in two 
consecutive cross sections updating iterations is less than 1%  

 
( ) ( )

( ) 2,1,,..1%1
1

,

,,
==≤

−−
gNi

k

kk
avg

ig

avg
ig

avg
ig

ϕ

ϕϕ
               (2-51) 

• The change in the eigenvalue in two consecutive iterations is less than 10-3  
 

( ) ( ) 3101 −≤−− kk λλ                                                                (2-52) 
  
The reconstructed fine-mesh flux is a byproduct of the method.  For each node, it is 
obtained by modulating the detailed flux distribution, which is obtained at each updating 
of the cross section through the high-order perturbation formalism (see Eqs (2-15)), with 
the nodal flux:  
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( ) ( )
( )

( )∑∑

∫ ∑

= =

=

∆
= N

i g

n
gpi

node g

node
g

n
gp

n
gr

i

xdx
ii

1

2

1'
',

2

1'
'

,,

ϕ

ϕ
ϕϕ                                                                               (2-53) 

  
where ( )in

gr ,ϕ  is the reconstructed flux for group g and mesh i in node n, and ( )in
gp ,ϕ  is 

the fine-mesh flux for group g and mesh i in node n obtained using the perturbation 
formalism.  The denominator of the ratio in Eq. (2-53) represents the integral of the nodal 
flux over the node n, and the numerator is the integral of the fine-mesh flux, obtained 
from the perturbation formalism, over the assembly corresponding to node n. 
 
The reconstructed flux at a different order of the correction is compared to the 0th order 
(standard GET) reconstructed flux.  The reconstruction of the 0th order flux here is 
performed by modulating the infinite-medium assembly flux with the nodal flux obtained 
by using the standard (uncorrected) cross sections in the nodal calculations.  The form of 
the 0th order reconstructed flux in a node is expressed as: 

 
( ) ( ) ( ) Nixxcx i

im
i
ni

i
r ,1, == ϕϕϕ                                                                              (2-54) 

 
where N is the number of nodes, i is the node index, rϕ is the 0th order reconstructed flux, 

nϕ is the nodal flux, imϕ  is the infinite-medium flux, and ci is a constant.  The constant ci 
is determined by requiring the 0th order reconstructed flux to be continuous at the node 
interface: 

 
( ) ( ) ( ) ( ) 1,1,1,

1
1,

1
11,1, −== +

+
+

+
+++ Nixxcxxc ii

i
imii

i
niii

i
imii

i
ni ϕϕϕϕ                                     (2-55) 

 
where xi,i+1 is the coordinate corresponding to the interface between nodes i and i+1.  If c1 
is fixed (c1 =c), all the others constants ci (i=2,…N-1) are determined from (2-51).  c is 
determined by equating the core-integrated nodal flux with the core-integrated 0th order 
reconstructed flux.  
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2.3.2. Two-dimensional configurations 
 

For one-dimensional configurations, the use of both bilinear and flat intranodal shape of 
the nodal flux when solving the nodal equations lead to very good results with respect to 
the implementation of the high-order cross section homogenization method7.  For a two-
dimensional configuration however, the use of a flat flux approximation to solve the 
nodal equations is too crude. Therefore, the high-order homogenization method would 
need to be implemented into a nodal code with a better approximation for the intra -nodal 
flux shape. 

 
For the present project, a transverse integrated approach is considered to solve the nodal 
equations, with a nodal expansion method (NEM)8 employed to determine the solutions 
for the transverse-integrated equations in Cartesian geometry.  The basic formalism is 
presented below.  The integration of the multigroup diffusion equation over a node k (see 
figure below) leads to: 
 

1 1k k k k k k k
gx gx gy gy rg g gJ J J J Q

x y+ − + −   − + − + Σ Φ =   ∆ ∆
                                                       (2-56) 

 
where  k

gdJ ±  and k
gΦ  are the component of net current averaged over the d-directed face 

of the node and the node- averaged flux.  Their expressions are: 
 

( )
/ 2

/ 2/ 2

1 ,
yk k k

gx g g x xy
J D x y dy

y x
∆

± =±∆−∆

∂
= − Φ
∆ ∂∫                                                                 (2-57) 

( )
/ 2 / 2

/ 2 / 2

1 ,
x yk k

g gx y
dx dy x y

x y
∆ ∆

−∆ −∆
Φ = Φ

∆ ∆ ∫ ∫                                                                          (2-58) 

 
k
gD , k

rgΣ , and  k
gQ  are the diffusion coefficient, removal cross section and source term for 

group g in node k, respectively.  The expression for the source term is:  
 

y

x

∆x/2 -∆x/2 

∆y/2 

-∆y/2 
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' ' ' '
' 1 ' 1

'

1 G G
k k k k k k
g g fg g gg g

g g
g g

Q χ ν
λ = =

≠

= Σ Φ + Σ Φ∑ ∑                                                                              (2-59) 

 
By integrating Eq. 2-56 over each direction x and y, one gets the second-order form of 
the transverse-integrated equations: 
 

1( ) ( ) ( ) ( )k k k k k k
g gx rg gx gx gy

d dD x x Q x L x
dx dx y

− Φ +Σ Φ = −
∆

                                                 (2-60a) 

1( ) ( ) ( ) ( )k k k k k k
g gy rg gy gy gx

d dD y y Q y L y
dy dy x

− Φ +Σ Φ = −
∆

                                               (2-60b) 

 
These one-dimensional equations are solved by using a fourth-order polynomial 
expansion8 : 
 

4

0
1

( ) ( ) ( )k k k
gx g gxn n

n
x f x a f x

=

Φ Φ +∑                                                                                  (2-61) 

 
with the basis functions given by: 
 

0 ( ) 1f x ≡                                                                                                                      (2-62a) 

1( ) xf x
x

ξ≡ =
∆

         (2-62b) 

2
2

1( ) 3
4

f x ξ≡ −          (2-62c) 

3
1 1( )
2 2

f x ξ ξ ξ  ≡ − +  
  

        (2-62d) 

2
4

1 1 1( )
20 2 2

f x ξ ξ ξ   ≡ − − +   
   

       (2-62e) 

 
The one-dimensional fluxes are determined by using a weighted residual procedure 
applied to Eqs. 2-60 (see references 8 and 9 for details).   The calculation of the 
transverse leakage moments requires additional approximations for the transverse leakage 
terms ( )k

gxL y and ( )k
gyL x in Eqs. 2-60.  Here a quadratic polynomial approximation is 

used: 
 

1 1 2 2( ) ( ) ( )k k k k
gy gy gy gyL x L f x f xρ ρ≅ + +        (2-63) 

 
where k

gyL is the average transverse integrated leakage.  The expansion coefficients 

1
k
gyρ and 2

k
gyρ are determined by requiring that: 
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1

/ 2
1

1 / 2

1 ( )
k

k k

x
k k
gy gy

k x x

dxL x L
x

−

−∆
−

− −∆ −∆

=
∆ ∫         (2-64a) 

 
1/ 2

1

1 / 2

1 ( )
k k

k

x x
k k
gy gy

k x

dxL x L
x

+∆ +∆
+

+ ∆

=
∆ ∫         (2-64b) 

 
 
The NEM equations are commonly solved by using a response matrix formulation. The 
implementation of NEM for this project utilizes a nonlinear matrix formulation9 of the 
nodal equations, which makes use of equivalence theory to force the coarse-mesh finite 
difference equations to match the results of a high order nodal method.  This nonlinear 
scheme was originally introduced by Smith10.  The advantage of this scheme relies in 
having the node averaged fluxes as the only unknowns and in its requiring less 
computation time than a response matrix formulation. 
 
The strategy of this nonlinear scheme10 is summarized here.  The expression of the 
interface current in the usual finite-difference nodal method used to eliminate the current 
term  
 

( )( )
( ) ( )
2 / /

/ /

u u

u

u u

k kk k
g u g u kk k

gu g gk kk k
g u g u

D h D h
J

D h D h

+ +

+

+ +
+  = Φ −Φ +

      (2-65) 

 
is modified in the non-linear scheme to: 
 

( )( )
( ) ( ) ( )
2 / /

/ /

u u

u u

u u

k kk k
g u g u k kk k k k

gu g g gu g gk kk k
g u g u

D h D h
J C

D h D h

+ +

+ +

+ +
+ +

 = Φ −Φ + Φ +Φ +
   (2-66) 

   
u stands for direction, h for node length, and k

guC + is a coupling correction factor for the 
interface between nodes k and ku+.  The correction factor is obtained as: 
 

 
( ) ( )
( )( ) ( )

/ /
/

2 / /

u u

u u

u u

k kk k
g u g u k kk k k k

gu gu g g g gk kk k
g u g u

D h D h
C J

D h D h

+ +

+ +

+ +
+ +

 +
 = −Φ +Φ Φ +Φ
  

   (2-67) 

 
where k

guJ + is replaced by the value corresponding to the NEM formulation: 
 

( )
k
gk k

gu gu uk
u

D dJ u
h dx+ += − Φ         (2-68) 

 
The steps of the nodal calculation are: 
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- solve the finite difference (FD) equations (null coupling correction factors) and 
get the flux in each node 

- use this flux solution to solve the two-node problems for each node and interface 
for obtaining the NEM currents  (2-68) and the corresponding coupling factors (2-
67) 

- calculate the new FD coefficients using (2-66) and solve the FD nodal equations 
- repeat all previous steps until convergence is achieved. 
 

Note that the above mentioned procedure is only for the calculation of the nodal flux.  
The correction of the homogenized parameters, as explained in 2-3, is a different level of 
the calculation (the correction uses the current-to-flux ratio) as given from the solution of 
the nodal equations). 
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III. DESCRIPTION OF THE BENCHMARK CONFIGURATIONS 
 
 
3.1. One-dimensional configurations 
 
The layouts for the two seven-assemblies configurations used for the testing of the 
method for one- and two-group one-dimensional problems are shown in Figure 3-1 [5].  
Each configuration is a core typical of a BWR in slab geometry, with a total length of 
106.68 cm. Each core is made-up of two unique alternating assemblies lined-up in a one-
dimensional array with a zero-current external boundary condition. The first 
configuration is a very simple case with relatively small changes across the core (see 
Figure 3-2).  The second configuration is designed to be a relatively difficult benchmark 
problem for coarse-mesh methods (see Figure 3-2).  
 
The three types of assemblies have the same geometry, but a different fuel composition.  
Each assembly consists of four fuel regions each 3.231 cm thick surrounded by water.  
The water gap is 1.158 cm thick, and the assembly length is 15.24 cm.  The type 1 
assembly contains two enrichment zones whereas the type 2 assembly has one 
enrichment zone with slightly smaller average enrichment. The type 3 assembly is the 
same as type 1 except that it contains gadolinium in two of the four fuel regions ((k∝ = 
0.6677).  The gadolinium content is purposely increased to create a highly heterogeneous 
configuration.  The one-group cross sections7 are given in Table 3-1, and the two-group 
cross sections [5] in Table 3-2.  The infinite medium multiplication constant for each 
assembly type is given in Table 3-3 for the two-group case.   
 
Table 3-1. Material properties for assemblies in configurations 1 and 2 (one-group) 

 
Cross Section* 

 
Water Fuel I Fuel II Fuel III 

(with Gd) 
D  1.44 1.24 1.22 1.30 
σa 0.00205 0.0238 0.0284 0.075 
γσf 0.0 0.0314 0.0416 0.00844 

* The diffusion coefficients are in cm, and the cross sections in cm-1  
 
Table 3-2. Material properties for assemblies in configurations 1 and 2 (two-group) 

 
Cross Section* 

 
Water Fuel I Fuel II Fuel III 

(with Gd) 
D1  1.7639 1.4730 1.4804 1.5432 
σa1 0.0003 0.0096 0.0101 0.0135 
γσf1 0 0.0067 0.0078 0.0056 
σs12 0.0380 0.0161 0.0156 0.0136 
D2  0.2278 0.3294 0.3362 0.3143 
σa2 0.0097 0.0764 0.0901 0.4873 
γσf2 0 0.1241 0.1542 0.0187 
σs21 0 0 0 0 
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* The diffusion coefficients are in cm, and the cross sections in cm-1  

Table 3-2. K∝
* for assemblies in configurations 1 and 2 (two-group) 

 
Assembly Type K∝ 

1 1.33267 
2 1.30188 
3 0.66768 

                                                          *Calculated with 6 meshes/each material region 
 
 

 
         Assembly 1                      Assembly 2                       Assembly 3 

 
   
 
 
 
 
 
                           
 
 
 
 
                                     Water              Fuel I              Fuel II          Fuel III  
                                                                                                        (with Gd)                          
  
                                                      Configuration 1 
 
 
                                                     Configuration 2 
 
 
                                                       Configuration 2 
 
 
 
 
 
 

Figure 3-1. Assemblies and Configurations Layouts for Cores 1 and 2 
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Figure 3-2.  Flux Distribution in Configuration 1
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                           Figure 3-3.  Flux Distribution in Configuration 2
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3.1.1. Development of new benchmarks  
 
Three new more realistic benchmark configurations typical of a BWR in slab geometry 
were developed.  Each core configuration has 16 fuel assemblies, and a total length of 
243.84 cm.  There are six different assembly types.  Each assembly, of the GE-9 bundle 
design, consists of eight fuel regions with water gaps at each side.  The assembly and 
core layouts are shown in Figures 3-4 and 3-5, respectively.  The assembly types are 
labeled from 1 to 6, and the core types are labeled A, B, and C.  The cross sections for 
each assembly type are given in Tables 3-3 to 3-8, and the infinite-medium multiplication 
constant is given in Table 3-9.  The fine-mesh flux distributions from in core 
configurations A, B and C are shown in Figures 3-6, 3-7 and 3-8, respectively.  Because 
of the symmetry, only the distribution for the left half of the configuration is shown.  It 
can be observed that core C is the most heterogeneous one, with large variations of the 
flux across the core. 
 
The two-group cross sections for the one-dimensional assemblies in Figure 3-4 were 
generated from the infinite-medium solution of a fine-mesh two-dimensional model of 
the 8 × 8 GE9 fuel assembly [3] with eight burnable gadolinium absorber rods.  The 
infinite-medium solution was computed using the collision-probability code HELIOS [2] 
version 1.6 [7] with a 45-group neutron cross section library. A plot of the HELIOS 
computational mesh is shown in Figure 3-9.  Note that only half of the assembly was 
modeled due to the diagonal symmetry of the system.  The fuel was depleted to a burnup 
of 50,000 MWd/tU through 52 time steps.  Six burnup levels were selected for use in the 
1-D slab problem: fresh fuel with equilibrium Xenon and Samarium concentrations; 
12,000; 27,500; 30,000; 35,000; and 50,000 MWd/tU.  The fine-group cross sections for 
these assembly states were then homogenized in ten regions and collapsed to the classic 
two-group structure (0.625 eV fast/thermal boundary).  The regions correspond to 
vertical slices of the assembly. With the assembly oriented with the wide gap on the left 
(as in Figure 3-9), the first region includes everything to the left of the first column of pin 
cells.  The next eight regions correspond to the eight columns of pin cells.  Note that the 
central two columns do not have straight vertical boundaries in the HELIOS model.  
Consequently, the average width of each of these two regions was used in the 1-D slab 
model.  The tenth and final region corresponds to everything to the right of the last 
column of pin cells.  Finally, assemblies were arranged in the 1-D core so that the wide 
and narrow gaps of neighboring assemblies were adjacent, as in actual BWR cores. 
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Geometry for assembly type 1, 3 and 5 
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Geometry for assembly type 2, 4 and 6 
 

Figure 3-4. Layouts for Assemblies in Configurations A, B, and C
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Figure 3-5. Layouts for Configurations A, B and C 
 
 
 

                   Table 3-3.  K∝
* for Assemblies in Cores A, B and C  

 
 

 
Assembly 

 
Burnup 

(MWd/tU) 

 
K∝

* 

1 30,000 0.99787 
2 27,500 1.02104 
3 35,000 0.95309 
4 0 + Xe/Sm 1.05206 
5 50,000 0.83781 
6 12,000 1.16238 

                   * Fine-mesh calculations with 6 meshes per material region 
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Table 3-4. Cross Section* Data for Assembly 1 
 

Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 
1 .123606E+01 .000000E+00 .502126E-03 .294667E-01 .275967E+00 .000000E+00 .824310E-02 
2 .132711E+01 .357186E-02 .912890E-02 .134793E-01 .418860E+00 .673313E-01 .575315E-01 
3 .134518E+01 .418529E-02 .871413E-02 .122726E-01 .414601E+00 .845764E-01 .659061E-01 
4 .134056E+01 .450485E-02 .904711E-02 .116912E-01 .414376E+00 .959859E-01 .721948E-01 
5 .133044E+01 .339868E-02 .686882E-02 .149655E-01 .363271E+00 .683769E-01 .534524E-01 
6 .133026E+01 .348024E-02 .677523E-02 .152843E-01 .363114E+00 .701716E-01 .539338E-01 
7 .133903E+01 .477865E-02 .911480E-02 .111977E-01 .413490E+00 .104183E+00 .760959E-01 
8 .134394E+01 .467405E-02 .894015E-02 .113039E-01 .412236E+00 .994829E-01 .733380E-01 
9 .132979E+01 .436352E-02 .927441E-02 .120595E-01 .413988E+00 .908413E-01 .692121E-01 

10 .128959E+01 .000000E+00 .594152E-03 .230344E-01 .315804E+00 .000000E+00 .739186E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 

 
 

Table 3-5. Cross Section* Data for Assembly 2 
 

Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 
1 .129066E+01 .000000E+00 .593008E-03 .229587E-01 .316129E+00 .000000E+00 .738181E-02 
2 .133083E+01 .448700E-02 .921768E-02 .120335E-01 .413772E+00 .937679E-01 .700652E-01 
3 .134491E+01 .480552E-02 .889558E-02 .112858E-01 .412123E+00 .102478E+00 .741872E-01 
4 .133999E+01 .491485E-02 .906971E-02 .111782E-01 .413368E+00 .107359E+00 .770120E-01 
5 .133130E+01 .358057E-02 .674298E-02 .152424E-01 .363115E+00 .723637E-01 .545548E-01 
6 .133157E+01 .350162E-02 .683371E-02 .149244E-01 .363234E+00 .706760E-01 .541394E-01 
7 .134169E+01 .464404E-02 .900012E-02 .116669E-01 .414063E+00 .994246E-01 .732746E-01 
8 .134633E+01 .431137E-02 .866630E-02 .122512E-01 .414260E+00 .877441E-01 .669033E-01 
9 .132837E+01 .365292E-02 .904741E-02 .134504E-01 .418656E+00 .695389E-01 .581468E-01 

10 .123725E+01 .000000E+00 .501013E-03 .293568E-01 .276130E+00 .000000E+00 .823674E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 
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Table 3-6. Cross Section* Data for Assembly 3 
 

Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 
1 .123391E+01 .000000E+00 .504241E-03 .296708E-01 .275660E+00 .000000E+00 .825518E-02 
2 .132492E+01 .343357E-02 .929063E-02 .135307E-01 .419244E+00 .634313E-01 .564453E-01 
3 .134308E+01 .395448E-02 .880972E-02 .123112E-01 .415354E+00 .785511E-01 .639516E-01 
4 .133846E+01 .424347E-02 .914015E-02 .117385E-01 .415143E+00 .892341E-01 .699840E-01 
5 .132830E+01 .320441E-02 .693837E-02 .150491E-01 .363420E+00 .638225E-01 .520241E-01 
6 .132827E+01 .328983E-02 .683864E-02 .153671E-01 .363197E+00 .657869E-01 .526174E-01 
7 .133723E+01 .451778E-02 .920275E-02 .112397E-01 .413921E+00 .977767E-01 .741315E-01 
8 .134214E+01 .442286E-02 .902725E-02 .113430E-01 .412638E+00 .934750E-01 .715297E-01 
9 .132786E+01 .413453E-02 .938686E-02 .121126E-01 .414507E+00 .851878E-01 .674935E-01 

10 .128756E+01 .000000E+00 .596386E-03 .231822E-01 .315162E+00 .000000E+00 .741177E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 

 
 

Table 3-7. Cross Section* Data for Assembly 4 
 

Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 
1 .128965E+01 .000000E+00 .589990E-03 .232679E-01 .319333E+00 .000000E+00 .728288E-02 
2 .133315E+01 .624849E-02 .841321E-02 .125178E-01 .419496E+00 .108700E+00 .660741E-01 
3 .133930E+01 .633130E-02 .887330E-02 .119167E-01 .400060E+00 .972496E-01 .963494E-01 
4 .133295E+01 .646164E-02 .905883E-02 .117938E-01 .399344E+00 .991401E-01 .101514E+00 
5 .132750E+01 .487744E-02 .631206E-02 .157675E-01 .371781E+00 .805383E-01 .504019E-01 
6 .132481E+01 .470393E-02 .696659E-02 .154214E-01 .353952E+00 .653003E-01 .818175E-01 
7 .133896E+01 .631830E-02 .893711E-02 .123118E-01 .397431E+00 .978842E-01 .101481E+00 
8 .135244E+01 .614404E-02 .795681E-02 .127463E-01 .419030E+00 .107776E+00 .657387E-01 
9 .133924E+01 .517189E-02 .784389E-02 .137731E-01 .423202E+00 .870540E-01 .562101E-01 

10 .124152E+01 .000000E+00 .494303E-03 .291780E-01 .277557E+00 .000000E+00 .818209E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 
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Table 3-8. Cross Section* Data for Assembly 5 
 

Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 
1 .122965E+01 .000000E+00 .509310E-03 .300991E-01 .274934E+00 .000000E+00 .828368E-02 
2 .132110E+01 .318544E-02 .974767E-02 .136133E-01 .419990E+00 .558469E-01 .545154E-01 
3 .133902E+01 .345481E-02 .909815E-02 .123717E-01 .417492E+00 .645840E-01 .593034E-01 
4 .133386E+01 .363393E-02 .942208E-02 .118380E-01 .417709E+00 .722484E-01 .641240E-01 
5 .132318E+01 .274190E-02 .715081E-02 .152664E-01 .364127E+00 .520350E-01 .480830E-01 
6 .132341E+01 .282721E-02 .703014E-02 .155714E-01 .363790E+00 .541166E-01 .488156E-01 
7 .133293E+01 .386514E-02 .946561E-02 .113599E-01 .416041E+00 .802240E-01 .682536E-01 
8 .133796E+01 .379774E-02 .928761E-02 .114561E-01 .414607E+00 .771718E-01 .661796E-01 
9 .132366E+01 .361035E-02 .972077E-02 .122524E-01 .416248E+00 .712566E-01 .630325E-01 

10 .128269E+01 .000000E+00 .602301E-03 .235516E-01 .313506E+00 .000000E+00 .746432E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 

 
Table 3-9. Cross Section* Data for Assembly 6 

 
Material #** D1 νσf1 σa1 σ12 D2 νσf2 σa2 

1 .129676E+01 .000000E+00 .586354E-03 .225763E-01 .318163E+00 .000000E+00 .732088E-02 
2 .133757E+01 .537239E-02 .880688E-02 .119636E-01 .414007E+00 .110721E+00 .737301E-01 
3 .135063E+01 .568988E-02 .857664E-02 .112871E-01 .412227E+00 .116708E+00 .794471E-01 
4 .134570E+01 .582692E-02 .873877E-02 .111657E-01 .413776E+00 .122522E+00 .820451E-01 
5 .133753E+01 .426455E-02 .649957E-02 .150814E-01 .364382E+00 .839712E-01 .567871E-01 
6 .133846E+01 .420883E-02 .657689E-02 .147676E-01 .363679E+00 .826763E-01 .578628E-01 
7 .134912E+01 .560637E-02 .864986E-02 .115892E-01 .413849E+00 .118378E+00 .785372E-01 
8 .135434E+01 .522557E-02 .832292E-02 .121641E-01 .413774E+00 .106964E+00 .718649E-01 
9 .133755E+01 .433802E-02 .848741E-02 .132915E-01 .418015E+00 .853734E-01 .619111E-01 

10 .124513E+01 .000000E+00 .493887E-03 .286684E-01 .277157E+00 .000000E+00 .819725E-02 
* Diffusion coefficients are in cm and cross sections are in cm-1 ; no upscattering. 
** From left to right of the assembly 
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Figure 3-6.  Flux Distribution in Configuration A 
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Figure 3-7.  Flux Distribution in Configuration B 
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Figure 3-8.  Flux Distribution in Configuration C 
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Figure 3-9.  HELIOS Model of the GE-9 Fuel Assembly 
 
 
 
 
 



 

31 
 
 

 

W BA+ AB B+B+ BAA 

A+ B+ W A4 BBB7 A AB4 

W A7 B+ ABB7 BAA+A7 

A+B+ W AB A BA7 B4 A4 

ABAB A B W WWB

WWABBA B A A W 

AA+ A+ B B+ BABA W 

AB ABAB W BB+ A+ 

A+ ABA AB B W AB+ 

WWWWW WW W W W 

3.2. Two-dimensional configurations 
 
The benchmark configuration used for two-dimensional problems is the HAFAS core6 
representing a BWR core.  The core, made up of forty-nine assemblies of seven types, is 
153.1 cm by 153.1 cm (see Figure 3-10). Each assembly contains three distinct types of 
fuel and water. The mesh layout for an assembly is shown in Figure 3-11. The material 
map for each assembly type is presented in Table 3-10, and the material composition of 
each fuel type is found in Table 3-11.  The voided assemblies are marked as A7/B7 (70% 
void) and A4/B4 (40% void).  The controlled assemblies are identified with a “+” sign. 
Boxes marked with “W” contain water only.    
                                                                     Jin = 0 
 
 
 
 
 
 
 
 
 
 
 
             J = 0                                                                                                      Jin = 0 
 
 
 
 
 
 
 
 

 
 

J = 0 
Figure 3-10. HAFAS core 

 
 

Table 3-10. Material map for HAFAS assemblies* 

 
 A A4 A7 A+ B B4 B7 B+ W 
I 1 5 9 1 2 6 10 2 15 
II 2 6 10 2 3 7 11 3 15 
III 3 7 11 3 4 8 12 4 15 
IV 13 13 13 14 13 13 13 14 15 
V 13 13 13 13 13 13 13 13 15 

                                                       * A and B correspond to fresh and depleted states, respectively 
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Figure 3-11. Configuration and mesh layout for each assembly 
 
 
 

Table 3-11. Material properties for the HAFAS core 
 

Material D1 
(cm) 

D2 
(cm) 

Σ1 
(cm-1) 

Σ2 
(cm-1) 

Σ12 
(cm-1) 

νΣf1 
(cm-1) 

νΣf2 
(cm-1) 

1:   Fuel a(void 0%) 1.4000 0.3750 0.0090 0.0800 0.0160 0.0065 0.1220
2:   Fuel b(void 0%) 1.4000 0.3750 0.0090 0.0700 0.0170 0.0057 0.1000
3:   Fuel c (void 0%) 1.4000 0.3750 0.0090 0.0600 0.0180 0.0051 0.0800
4:   Fuel d (void 0%) 1.4000 0.3750 0.0090 0.0500 0.0180 0.0051 0.0700
5:   Fuel a (void 40%) 1.6800 0.5300 0.0080 0.0770 0.0100 0.0063 0.1180
6:   Fuel b (void 40%) 1.6800 0.5300 0.0085 0.0670 0.0105 0.0055 0.0960
7:   Fuel c (void 40%) 1.6800 0.5300 0.0090 0.0570 0.0010 0.0049 0.0780
8:   Fuel d (void 40%) 1.6800 0.5300 0.0090 0.0470 0.0010 0.0049 0.0680
9:   Fuel a (void 70%) 0.0010 0.0049 0.0680 0.0730 0.0052 0.0061 0.1140
10: Fuel b (void 70%) 2.0000 0.8000 0.0082 0.0630 0.0053 0.0053 0.0920
11: Fuel c (void 70%) 2.0000 0.8000 0.0086 0.0530 0.0054 0.0047 0.0720
12: Fuel d (void 70%) 2.0000 0.8000 0.0860 0.0430 0.0054 0.0047 0.0620
13: Can+Water 1.5300 0.2950 0.0005 0.00900 0.0031 0.0000 0.0000
14: Control Blade 1.1100 0.1850 0.08375 0.9500 0.00375 0.0000 0.0000
15: Water 2.0000 0.3000 0.0000 0.0100 0.0400 0.0000 0.0000

 

 III  II  II  III 

 II  I  I   II 

 II  I  I  II 

 III  II  II  III 

V

0.4  0.90.97 3.26

 IV

3.26 3.26 3.26
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IV. RESULTS 
 
 
4.1. Convergence of the Expansion Series  
 
4.1.1 One-group one-dimensional problems 
 
The convergence of the expansion series (see Eqs. 2-11, 2-12, 2-19) is tested using as a 
benchmark an assembly typical of a BWR in slab geometry, as shown in Figure 3-1.  An 
infinite-medium (net zero current) boundary condition is used as the initial state of the 
assembly.  Then different perturbations of the boundary condition (current-to-flux ratio) 
are considered: those subjected to when the assembly is located in configuration 2 (see 
Figure 3-1).  These current-to-flux ratios are determined for each assembly by performing 
fine-mesh diffusion calculations for the full core.  For each perturbation, the expansion 
coefficients for flux, eigenvalue and homogenized cross section are calculated, and the 
corrected values are compared to the “exact” values.  The “exact” value here means the 
flux and eigenvalue obtained from fine-mesh assembly calculation, using for the 
boundary condition the corresponding current-to-flux ratio obtained from the fine-mesh 
full core calculation.  
 
The results for assembly type 3 are shown in Tables 4-1 and 4-2. The corresponding 
results for assembly type 1 are given in Tables 4-3 and 4-4.  The “exact” case for each 
assembly is the single assembly fine-mesh calculation with 1200 meshes per assembly.  
The “exact” eigenvalue for each case does not perfectly match the eigenvalue for the core 
(0.8969) due to numerical limitations in determining the albedo and in computations.  
The comparison of the reference and the calculated flux distributions is made by means 
of the flux RMS, which is defined as: 

 
1/ 22

, ,

1 ,

1100
1

N
reference i calculated i

i reference i

RMS
N

φ φ
φ=

  −
 =   −   

∑                           (4-1) 

 
In the above equation, N is the total number of meshes.  As seen from the tables, the 
accuracy improves with increasing order of the expansion terms.  The fourth order 
expansion seems sufficient to significantly reduce the errors in the homogenized cross 
sections.  The error in the heterogeneous discontinuity factor χ  (defined as the ratio of 
the surface average flux to the assembly average flux) becomes insignificantly small 
when 7th order perturbation theory is used.  The 4th order corrected flux models very well 
the reference flux distribution in comparison to the unperturbed (0th order) flux.  In case 1 
for example the flux RMS at 4th order is 0.2 versus 20.2% for the 0th order.   
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Table 4-1.  Flux and eigenvalue results for assembly #1*  
 

C
as

e 
 #

 
 

(J/Φ)left 
 

 
(J/Φ)right 

 

 
Reference  
Eigenvalue 

λref 

 
Ord. of 

Pert. 
 

 
Calculated 
Eigenvalue 

λcalc 

 
Error*** 

 

 
Flux 

RMS 

(%) 

    0 0.7248 19.0 20.2 
1* 0. 0.13321 0.8969 1 1.0006 -12.0 9.7 
    2 0.8414 6.2 3.9 
    3 0.9230 -2.9 1.2a 

    0 0.7248 19.0 15.3 
2** 0.00904 0.10706 0.8970 1 0.9652 -7.6 6.1 

    2 0.8680 3.2 2.0 
    3 0.9081 -1.2 0.5b 

                                     * positioned first in configuration 2 starting from left to right 
                                     ** positioned third in configuration 2 starting from left to right 
                       **calculated as as 100*(λcalc -λref)/ λref 
                                     a 4th order = 0.2 
                                     b 4th order = 0.09 

 
 

Table 4-2.  Homogenized cross sections* for assembly #1  
  

C
as

e 
 #

 

Order 
 of  

Pert. 

 
D 

(err)e 

 
νσf 
(err) 

 

σa 
(err) 

 
χleft

f 
(err) 

 
χright 
(err) 

 reference 1.2588 0.03161 0.02284 1.1575 0.6297 
1** 0 1.2616 

(-0.2) 
0.03103 

(1.8) 
0.02249 

(1.5) 
0.9907 
(-14.4) 

0.9907 
(57.3) 

 1 1.2570 
(-0.2) 

0.03192 
(-1.0) 

0.02303 
(-0.8) 

1.2312 
(6.4) 

0.4475 
(-28.9) 

 2 1.2594 
(-0.1) 

0.03145 
(0.5) 

0.02275 
(0.4) 

1.1311 
(-2.3) 

0.7090 
(12.6) 

 3 1.2583 
(0.0) 

0.03166 
(-0.2) 

0.02288 
(-0.2) 

1.1629 
(0.5a) 

0.6023 
(-4.4b) 

 reference 1.2421 0.03161 0.02284 1.0953 0.6917 
2*** 0 1.2444 

(-0.2) 
0.03103 

(1.8) 
0.02249 

(1.5) 
0.9907 
(-9.6) 

0.9907 
(43.2) 

 1 1.2411 
(0.1) 

0.03181 
(-0.6) 

0.02296 
(-0.5) 

1.1471 
(4.7) 

0.5705 
(-17.5) 

 2 1.2424 
(-0.0) 

0.03153 
(0.3) 

0.02279 
(0.2) 

1.1311 
(-2.3) 

0.7346 
(6.2) 

 3 1.2419 
(0.0) 

0.03163 
(-0.1) 

0.02286 
(-0.1)) 

1.1629 
(0.5a) 

0.6794 
(0.3b) 

                                     * the diffusion coefficient is in cm, and the cross sections are in cm-1 
                                                           * positioned first in configuration 2 starting from left to right 
                                                           ** positioned third in configuration 2 starting from left to right 
                                                            a 7th order error is 0.0 
                                                            b 7th order error is 0.0 
 



 

35 
 

 

 
Table 4-3.  Flux and eigenvalue results for assembly #3*  

 

C
as

e 
 #

 

 
(J/Φ)left 

 

 
(J/Φ)right 

 

 
Reference  
Eigenvalue 

λref 

 
Ord. of 

Pert. 
 

 
Calculated 
Eigenvalue 

λcalc 

 
Error*** 

 

 
Flux 

RMS 

(%) 

    0 2.1629 -141.0 56.6 
1* -0.13321 -0.00904 0.8968 1 1.4838 -65.0 9.8 
    2 1.0805 -20.0 7.6 
    3 0.8964 -0.04 5.7a 

    0 2.1629 -141.0 9.5 
2** -0.10706 -0.10706 0.9022 1 1.1407 -26.0 1.4 

    2 0.9441 -4.6 0.2 
    3 0.9092 -0.77 0.0 

                                   * positioned second in configuration 2 starting from to left to right 
                                   ** positioned at the center of configuration 2  
                       ***calculated as as 100*(λcalc -λref)/ λref 
                                     a 4th order = 0.3 
 

 
Table 4-4.  Homogenized cross sections* for assembly #3  

  

C
as

e 
 #

 

Order 
 of  

Pert. 

 
D 

(err)e 

 

 
νσf 
(err) 

 

σa 
(err) 

 
χleft

f 
(err) 

 
χright 
(err) 

 reference 1.3010 0.01744 0.03582 2.2680 0.5942 
1** 0 1.2968 

(0.32) 
0.01765 
(-1.2) 

0.03818 
(1.5) 

1.1664 
(-48.6) 

1.1664 
(96.3) 

 1 1.2993 
(0.13) 

0.01755 
(-0.6) 

0.03686 
(-2.9) 

1.9353 
(-14.7) 

0.6895 
(16.0) 

 2 1.3007 
(0.02) 

0.01748 
(-0.2) 

0.03611 
(-0.8) 

2.2807 
(0.6) 

0.5132 
(-13.6) 

 3 1.3013 
(-0.02) 

0.01745 
(0.0) 

0.03579 
(0.1) 

2.3354 
(3.0a) 

0.5324 
(-10.4b) 

 reference 1.3010 0.01745 0.03583 1.4300 1.4297 
2*** 0 1.2968 

(0.32) 
0.01765 
(-1.2) 

0.03818 
(-6.6) 

1.1664 
(-18.4) 

1.1664 
(-18.4) 

 1 1.3005 
(0.04) 

0.01750 
(-0.3) 

0.03619 
(-1.0) 

1.3861 
(-3.1) 

1.3862 
(-3.0) 

 2 1.3012 
(-0.01) 

0.01746 
(-0.1) 

0.03588 
(-0.1) 

1.4235 
(-0.5) 

1.4235 
(-0.4) 

 3 1.3013 
(-0.02) 

0.01745 
(-0.0) 

0.03585 
(0.0) 

1.4291 
(-0.1) 

1.4292 
(-0.0) 

                                     * the diffusion coefficient is in cm, and the cross sections are in cm-1 
                                                            * positioned second in configuration 2 starting from to left to right 
                                                            ** positioned at the center of configuration 2 the core 
                                                            *** positioned second in configuration 2 starting from right to left 
                                                            a 7th order error is 0.0 
                                                            b 7th order error is -0.7 
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4-1.2. Two-group one-dimensional problems 
 
A two-group fine-mesh diffusion code was developed to precompute the data (forward 
and ajoint fluxes, and Green’s function) required for calculating the expansion 
coefficients.  The fine-mesh calculations are performed with six meshes per each material 
region, leading to a total of thirty-six meshes per assembly.   
 
Results for assembly #1 
 
The flux and eigenvalue results for assembly type 1 (see Figure 3-1) are shown in Table 
4-5 for different magnitudes of the perturbation, corresponding to four different positions 
of the assembly in configurations 1 and 2.  The first two cases correspond to assembly 1 
in first and third position from left to right in configuration 1, and the other two cases 
correspond to the same positions in configuration 2.  The results corresponding to the 
assembly in the seventh and fifth position from left to right in the same configuration are 
not shown in the table, but they are similar.  The similarity of the results corresponding to 
symmetric positions of the assembly (e.g. first with seventh, third with fifth) in a 
configuration constituted one of the tests for assessing the correctness of the numerical 
implementation.  Another test consisted of verifying if the integral over the phase-space 
of any high-order coefficient in the flux expansion is zero, as predicted by the theoretical 
model.  In one case for example (see case 1 in Table 4-5), with 

( ) 2,1,,..1,10 4
,1 ==> − gNiigϕ , where i is a mesh index and g is a group index, a value 

of the order 10-8 was obtained for the integral of the first-order flux.  
 
The method produces very good results.  The flux RMS is less than 0.1% and the 
corrected eigenvalue is within 0.6% of the reference value for all four cases.  For small 
perturbations (cases 1 and 2) an expansion up to the second order is sufficient to obtain a 
very good agreement, whereas for larger perturbations (cases 3 and 4) four or five orders 
need to be considered.  To illustrate the change in the flux distribution with the order of 
the perturbation, the flux distribution for case 3 is shown in Figure 4-1 up to the fourth 
order.  It can be seen that there is a large shape difference between the infinite medium 
flux and the exact (reference) flux, especially for the fast group; the corrected solutions 
oscillate around the reference, until at the fourth order most of the difference is accounted 
for by the perturbation method.  For the other three cases the flux distributions are shown 
in Figures 4-2 to 4-4. 
 
The high-order corrected assembly-homogenized cross sections and discontinuity factors, 
corresponding to that magnitude of the perturbation as considered in Table 4-5, are 
presented in Table 4-6 for the fast group, and in Table 4-7 for the thermal group.  For 
small perturbations, one or two terms in the expansion of the homogenized cross sections 
are sufficient to reproduce the reference values, whereas for larger perturbations five 
terms are needed to obtain a similar agreement.   
 
The agreement is also very good for the discontinuity factors, even though the magnitude 
of the initial perturbation is larger compared to that for the cross sections (e.g., the error 
for the heterogeneous discontinuity factor on the right boundary is -34% in case 3 and -
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20% in case 4).   The second order correction of the discontinuity factors reproduce the 
reference values in cases 1 and 2.  In cases 3 and 4, the corrected values at the fifth order 
are within 0.15% of the reference results.  
 
 

Table 4-5.  Flux and eigenvalue results for assembly #1*  
 

C
as

e 
 #

a 

(J/Φ)left 
fast/ 

thermal 

(J/Φ)right 
fast/ 

thermal 

Reference 
Eigenvalue 

λref 

Ord. 
of  

Pert. 
 

Calculated 
Eigenvalue 

λcalc 

Errorb 
 

Fast 
Flux 

RMS 

(%) 

Thermal 
Flux 
RMS 

(%) 

                     0 0.75037 -0.96 0.71 0.53 
1  0.  0.4556E-02 0.75766 1 0.75764 0.00 0.01 0.01 
  0. -0.3652E-03  2 0.75754 -0.02 0.01 0.01 
    3 0.75754 -0.02 0.01 0.01 
    0 0.75037 -1.00 0.31 0.24 

2 -0.1988E-02    0.3129E-02 0.75794 1 0.75762 -0.04 0.00 0.00 
  0.5822E-03   -0.4851E-03  2 0.75756 -0.05 0.00 0.00 
    3 0.75756 -0.05 0.00 0.00 
    0 0.75037 -15.85 15.75    18.75 

3  0.  0.1026 0.89167 1 0.94218 5.66 4.03 5.31 
  0.  0.1178E-01  2 0.88328 -0.94 0.60 0.98 
    3 0.89731 0.63 0.11 0.21 
    4 0.89515 0.39 0.13 0.12 
    5 0.89512 0.39 0.07 0.08 
    0 0.75037 -15.85 8.97    11.01 

4 -0.1382E-01    0.7057E-01 0.89170 1 0.91549 2.67 1.72 2.42 
 -0.5439E-02    0.9505E-02  2 0.89365 0.22 0.17 0.33 
    3 0.89714 0.61 0.06 0.10 
    4 0.89670 0.56 0.05 0.05 
    5 0.89672 0.56 0.05 0.05 

*as shown in Figure 3-1 
a cases 1 and 2 refer to two different positions in configuration 1, cases 3 and 4 refer to two different 
  positions in configuration 2  
b calculated as 100*(λcalc -λref)/ λref 
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Figure 4-1.  Flux distribution for case 3 
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 Table 4-6.  Fast group cross sections* for assembly #1  
  

C
as

e 
 #

**
 Order 

 of  
Pert. 

 
D 

(err)e 

 

 
νσf 
(err) 

 

σr 
(err) 

 

σ12 
(err) 

 
χleft

f 
(err) 

 
χright 
(err) 

 reference 1.5182 6.2100E-3 8.4738E-3 1.9046E-2 0.9548 0.9362 
1a 0 1.5184 

(-0.01) 
6.2063E-3 

(0.06) 
8.4793E-3 

(0.05) 
1.9056E-2 

(-0.05) 
0.9490 
(0.61) 

0.9490 
(-1.37) 

 1 1.5182 
(0.00) 

6.2100E-3 
(0.00) 

8.4738E-3 
(0.00) 

1.9046E-2 
(0.00) 

0.9549 
(-0.01) 

0.9360 
(0.02) 

 2 1.5182 
(0.00) 

6.2100E-3 
(0.00) 

8.4738E-3 
(0.00) 

1.9046E-2 
(0.00) 

0.9548 
(0.00) 

0.9362 
(0.00) 

 reference 1.5182 6.2104E-3 8.4743E-3 1.9045E-2 0.9476 0.9476 
2b 0 1.5184 

(-0.01) 
6.2063E-3 

(0.07) 
8.4793E-3 

(0.06) 
1.9056E-2 

(-0.06) 
0.9490 
(-0.15) 

0.9490 
(-0.67) 

 1 1.5182 
(0.00) 

6.2004E-3 
(0. 00) 

8.4743E-3 
(0. 00) 

1.9045E-2 
(0. 00) 

0.9476 
(0. 00) 

0.9426 
(0. 01) 

 reference 1.5162 6.2713E-3 8.5476E-3 1.8880E-2 1.0769 0.7083 
 0 1.5184 

(-0.14) 
6.2063E-3 

(1.04) 
8.4793E-3 

(0.92) 
1.9056E-2 

(-0.93) 
0.9490 
(11.14) 

0.9490 
(-33.97) 

 1 1.5155 
(0.05) 

6.2929E-3 
(-0.34) 

8.5737E-3 
(-0.31) 

1.8821E-2 
(0.31) 

1.0942 
(-2.46) 

0.6430 
(9.22) 

3c 2 1.5164 
(-0.01) 

6.2660E-3 
(0.08) 

8.5411E-3 
(0.08) 

1.8895E-2 
(-0.08) 

1.0658 
(0.20) 

0.7197 
(-1.61) 

 3 1.5161 
(0.00) 

6.2726E-3 
(-0.02) 

8.5492E-3 
(-0.02) 

1.8876E-2 
(0.02) 

1.0681 
(-0.01) 

0.7060 
(0.33) 

 4 1.5162 
(0.00) 

6.2715E-3 
(0.00) 

8.5478E-3 
(0.00) 

1.8880E-2 
(0.00) 

1.0691 
(-0.11) 

0.7067 
(0.22) 

 5 1.5162 
(0.00) 

6.2715E-3 
(0.00) 

8.5478E-3 
(0.00) 

1.8880E-2 
(0.00) 

1.0691 
(-0.06) 

0.7067 
(0.15) 

 reference 1.5163 6.2693E-3 8.5451E-3 1.8886E-2 0.9915 0.7890 
 0 1.5184 

(-0.14) 
6.2063E-3 

(1.00) 
8.4793E-3 

(0.89) 
1.9056E-2 

(-0.90) 
0.9490 
(4.29) 

0.9490 
(-20.28) 

 1 1.5159 
(0.02) 

6.2782E-3 
(-0.14) 

8.5559E-3 
(-0.13) 

1.8861E-2 
(0.13) 

1.0052 
(-1.39) 

0.7597 
(3.71) 

4d 2 1.5163 
(0.00) 

6.2680E-3 
(0.02) 

8.5434E-3 
(0.02) 

1.8889E-2 
(-0.02) 

0.9903 
(0.12) 

0.7924 
(-0.43) 

 3 1.5162 
(0.00) 

6.2697E-3 
(-0.01) 

8.5456E-3 
(-0.01) 

1.8885E-2 
(0.01) 

0.9919 
(-0.04) 

0.7878 
(0.14) 

 4 1.5162 
(0.00) 

6.2695E-3 
(0.00) 

8.5453E-3 
(0.00) 

1.8885E-2 
(0.00) 

0.9919 
(-0.04) 

0.7882 
(0.10) 

* the diffusion coefficient is in cm, and the cross sections are in cm-1 
** cases 1 and 2 - two different positions in config. 1; cases 3 and 4 - two different positions in config. 2 
a  (J/φ)left=0; (J/φ)right= 0.4556E-02 
b  (J/φ)left=-0.1988E-02 ; (J/φ)right= 0.3129E-02 
c  (J/φ)left=0; (J/φ)right= 0.1026 
d  (J/φ)left=-0.1382E-01  ; (J/φ)right= 0.7057E-01 
e  calculated as 100*(reference-calculated)/reference 
f  heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux 
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Table 4-7.  Thermal group cross sections* for assembly #1   
 

C
as

e 
 #

**
 Order 

 of  
Pert. 

 
D 

(err)e 

 

 
νσf 
(err) 

 

σr 
(err) 

 
χleft

f 
(err) 

 
χright 
(err) 

 reference 3.0591E-1 1.0198E-1 6.3763E-2 1.7649 1.7431 
1a 0 3.0589E-1 

(0.00) 
1.0196E-1 

(0.02) 
6.3752E-2 

(0.02) 
1.7545 
(0.59) 

1.7545 
(-0.65) 

 1 3.0591E-1 
(0.00) 

1.0198E-1 
(0.00) 

6.3763E-2 
(0.00) 

1.7650 
(-0.01) 

1.7430 
(0.01) 

 2 3.0591E-1 
(0.00) 

1.0198E-1 
(0.00) 

6.3763E-2 
(0.00) 

1.7649 
(0.00) 

1.7431 
(0.00) 

 reference 3.0587E-1 1.0193E-1 6.3739E-2 1.7617 1.7524 
2b 0 3.0589E-1 

(-0.01) 
1.0196E-1 

(-0.02) 
6.3752E-2 

(-0.02) 
1.7545 
(0.41) 

1.7545 
(-0.12) 

 1 3.0587E-1 
(0.00) 

1.0193E-1 
(0.00) 

6.3739E-2 
(0.00) 

1.7617 
(0.00) 

1.7524 
(0.00) 

 reference 3.0695E-1 1.0351E-1 6.4558E-2 2.0371 1.3086 
 0 3.0589E-1 

(0.35) 
1.0196E-1 

(1.50) 
6.3752E-2 

(1.25) 
1.7545 
(13.87) 

1.7545 
(-34.08) 

 1 3.0728E-1 
(-0.01) 

1.0399E-1 
(-0.47) 

6.4808E-2 
(-0.39) 

2.1134 
(-3.75) 

1.1720 
(10.44) 

3c 2 3.0688E-1 
(0.02) 

1.0341E-1 
(0.10) 

6.4507E-2 
(0.08) 

2.0259 
(0.55) 

1.3352 
(-2.03) 

 3 3.0696E-1 
(0.00) 

1.0353E-1 
(-0.02) 

6.4568E-2 
(-0.01) 

2.0392 
(-0.10) 

1.3027 
(0.45) 

 4 3.0696E-1 
(0.00) 

1.0352E-1 
(-0.01) 

6.4562E-2 
(-0.01) 

2.0393 
(-0.11) 

1.3061 
(0.19) 

 5 3.0696E-1 
(0.00) 

1.0352E-1 
(0.00) 

6.4560E-2 
(0.00) 

2.0384 
(-0.07) 

1.3061 
(0.15) 

 reference 3.0719E-1 1.0385E-1 6.4736E-2 1.8335 1.4682 
 0 3.0589E-1 

(0.42) 
1.0196E-1 

(1.83) 
6.3752E-2 

(1.52) 
1.7545 
(4.31) 

1.7545 
(-19.50) 

 1 3.0731E-1 
(-0.04) 

1.0403E-1 
(-0.17) 

6.4828E-2 
(-0.14) 

1.8712 
(-2.05) 

1.4010 
(4.58) 

4d 2 3.0718E-1 
(0.00) 

1.0384E-1 
(0.02) 

6.4727E-2 
(0.01) 

1.8280 
(0.30) 

1.4779 
(-0.66) 

 3 3.0720E-1 
(0.00) 

1.0386E-1 
(-0.01) 

6.4740E-2 
(-0.01) 

1.8349 
(-0. 07) 

1.4655 
(0.18) 

 4 3.0720E-1 
(0.00) 

1.0386E-1 
(-0.01) 

6.4739E-2 
(0.00) 

1.8343 
(-0. 04) 

1.4669 
(0.09) 

* the diffusion coefficient is in cm, and the cross sections are in cm-1 
** cases 1 and 2 - two different positions in config. 1; cases 3 and 4 - two different positions in config. 2 
a   (J/φ)left= 0; (J/φ)right= -0.3652E-3 
b   (J/φ)left= 0.5822E-03  ; (J/φ)right= -0.4851E-03 
c   (J/φ)left= 0; (J/φ)right=  0.1178E-01 
d   (J/φ)left=-0.5439E-02  ; (J/φ)right= 0.9505E-02 
e   calculated as 100*(reference-calculated)/reference 
f  heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux 
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Figure 4-2.  Flux distribution for case 1 
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Figure 4-3.  Flux distribution for case 2 
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Figure 4-4.  Flux distribution for case 4 
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Results for assembly #3 
 
The flux and eigenvalue results for assembly 3 (see Figure 3-1) are shown in Table 4-8 
for two values of the perturbation of the boundary condition, corresponding to the 
following position of the assembly in configuration 2: second from left to right, and at the 
center.  The magnitude of the perturbation is quite large, compared to the perturbation of 
the boundary condition for assembly 1 in the same configuration.  In case 5 for example, 
the initial eigenvalue is 68% off from the reference value, whereas the initial flux RMS 
error is 21% for the fast flux and 23% for the thermal flux.  A plot of the flux distribution 
for this last case is shown in Figure 4-5.  This figure gives a good indication of how large 
the perturbations are and how the method improves the results substantially.  Flux 
distribution for case 6 is shown in Figure 4-6.  
 
The high-order homogenized cross sections and discontinuity factors corresponding to 
assembly 3 are shown in Table 4-9 and 4-10 for the fast group and for the thermal group, 
respectively.  The corrected values agree very well with the reference results.  If the 
initial perturbation is larger, as it is the case for the discontinuity factors, higher orders 
corrections are needed to obtain a very good agreement.  For example, five orders are 
required to reduce an initial error of –32% in the thermal discontinuity factor on the right 
boundary down to 0.05%.    

 
Table 4-8.  Flux and eigenvalue results for assembly #3* 

 

C
as

e 
# 

 a  (J/Φ)left 
fast/ 

thermal 

(J/Φ)right 
fast/ 

thermal 

Reference 
Eigenvalue 

λref 

Ord. 
of  

Pert. 

Calculated 
Eigenvalue 

λcalc 

Errorb 
 

Fast 
Flux 

RMS 

(%) 

Thermal 
Flux 
RMS 

(%) 

    0 1.49772 67.97 21.24 22.68 
5 0.1026  -0.1382E-1 0.89168 1 1.03008 15.52 3.15 4.54 
 0.1178E-01 -0.5439E-2  2 0.93150 4.47 0.51 0.42 
    3 0.91292 2.38 0.37 0.35 
    4 0.91289 2.38 0.11 0.11 
    5 0.91421 2.53 0.05 0.05 
    0 1.49772 67.96 5.00 8.21 

6  0.7057E-1  -0.7057E-1 0.89170 1 0.93438 4.79 0.31 0.85 
  0.9505E-2  -0.9505E-2  2 0.91297 2.39 0.03 0.11 
    3 0.91365 2.46 0.02 0.04 
    4 0.91385 2.48 0.02 0.03 
    5 0.91386 2.49 0.02 0.03 

* as shown in Figure 3-1 
a cases 1 and 2 refer to two different positions in configuration 2  
b calculated as 100*(λcalc -λref)/ λref
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Figure 4-5.  Flux distribution for case 5 
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Table 4-5.  Fast group cross sections* for assembly #3   

 
C

as
e 

 #
**

 Order 
 of  

Pert. 

 
D 

(err)d 

 

 
νσf 
(err) 

 

σr 
(err) 

 

σ12 
(err) 

 
χleft

e 
(err) 

 
χright 
(err) 

 reference 1.54594 5.14140E-3 9.56391E-3 1.88051E-2 1.43396 0.81358 
 0 1.54312 

(0.18) 
5.21060E-3 

(-1.35) 
9.73547E-3 

(-1.79) 
1.84941E-2 

(1.65) 
1.01945 
(28.91) 

0.8136 
(-25.30) 

 1 1.54526 
(0.04) 

5.15810E-3 
(-0.32) 

9.60378E-3 
(-0.42) 

1.87318E-2 
(0.39) 

1.35486 
(5.52) 

0.84464 
(-3.82) 

5a 2 1.54580 
(0.01) 

5.14489E-3 
(-0.07) 

9.57187E-3 
(-0.08) 

1.87902E-2 
(0.08) 

1.43080 
(0.22) 

0.80743 
(0.76) 

 3 1.54592 
(0.00) 

5.14189E-3 
(-0.01) 

9.56487E-3 
(-0.01) 

1.88032E-2 
(0.01) 

1.43750 
(-0.25) 

0.80901 
(0.56) 

 4 1.54593 
(0.00) 

5.14160E-3 
(0.00) 

9.56431E-3 
(0.00) 

1.88043E-2 
(0.00) 

1.43484 
(-0.06) 

0.81219 
(0.17) 

 5 1.54593 
(0.00) 

5.14169E-3 
(-0.01) 

9.56457E-3 
(-0.01) 

1.88038E-2 
(0.01) 

1.43373 
(0.02) 

0.81293 
(0.08) 

 reference 1.54594 5.14140E-3 9.56392E-3 1.88051E-2 1.12377 1.12377 
 0 1.54312 

(0.18) 
5.21060E-3 

(-1.35) 
9.73547E-3 

(-1.79) 
1.84941E-2 

(1.65) 
1.01945 
(9.28) 

0.8136 
(9.28) 

 1 1.54571 
(0.02) 

5.14706E-3 
(-0.11) 

9.57627E-3 
(-0.13) 

1.87815E-2 
(0.13) 

1.11683 
(0.62) 

1.11683 
(0.62) 

6b 2 1.54591 
(0.00) 

5.14202E-3 
(-0.01) 

9.56517E-3 
(-0.01) 

1.88026E-2 
(0.01) 

1.12314 
(0.06) 

1.12314 
 (0.06) 

 3 1.54593 
(0.00) 

5.14167E-3 
(-0.01) 

9.56450E-3 
(-0.01) 

1.88040E-2 
(0.01) 

1.12340 
(0.03) 

1.12340 
 (0.03) 

* the diffusion coefficient is in cm, and the cross sections are in cm-1 
** cases 5 and 6 refer to two different positions in configuration 2 
a   (J/φ)left= 0.1026;       (J/φ)right= -0.1382E-1 
b   (J/φ)left= 0.7057E-1; (J/φ)right= -0.7057E-1 
d   calculated as 100*(reference-calculated)/reference 
e  heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux 
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Table 4-6.  Thermal group cross sections* for assembly #3   

 
C

as
e 

 #
**

 Order 
 of  

Pert. 

 
D 

(err)d 

 

 
νσf 
(err) 

 

σr 
(err) 

 
χleft

e 
(err) 

 
χright 
(err) 

 reference 2.89695E-1 6.77120E-2 8.85175E-2 3.45807 1.93438 
 0 2.91040E-1 

(-0.46) 
6.86045E-2 

 (-1.32) 
9.30339E-2 

(-5.10) 
2.55019 
(26.25) 

2.55019 
(-31.84) 

 1 2.89897E-1 
(-0.07) 

6.78493E-2 
 (-0.20) 

8.91802E-2 
(-0.75) 

3.26539 
(5.57) 

2.06684 
(-6.85) 

5a 2 2.89725E-1 
(-0.01) 

6.77346E-2 
 (-0.03) 

8.86076E-2 
(-0.10) 

3.44447 
(0.39) 

1.93466 
(-0.01) 

 3 2.89698E-1 
(0.00) 

6.77143E-2 
 (0.00) 

8.85184E-2 
(0.00) 

3.46451 
(-0.19) 

1.92541 
(0.46) 

 4 2.89697E-1 
(0.00) 

6.77144E-2 
 (0.00) 

8.85262E-2 
(-0.01) 

3.46011 
(-0.06) 

1.93128 
(0.16) 

 5 2.89701E-1 
(0.00) 

6.77159E-2 
 (-0.01) 

8.85354E-2 
(-0.02) 

3.45788 
(0.01) 

1.93337 
(0.05) 

 reference 2.89695E-1 6.77122E-2 8.85182E-2 2.69620 2.69620 
 0 2.91040E-1 

(-0.46) 
6.86045E-2 

 (-1.32) 
9.30339E-2 

(-5.10) 
2.55019 
(5.42) 

2.55019 
(5.42) 

 1 2.89732E-1 
(-0.01) 

6.77486E-2 
 (-0.05) 

8.85844E-2 
(-0.07) 

2.68075 
(0.57) 

2.68075 
(0.57) 

6b 2 2.89699E-1 
(0.00) 

6.77158E-2 
 (-0.01) 

8.85264E-2 
(-0.01) 

2.69425 
(0.07) 

2. 69425 
(0.07) 

 3 2.89700E-1 
(0.00) 

6.77157E-2 
 (-0.01) 

8.85334E-2 
(-0.02) 

2.69551 
(0.03) 

2. 69551 
(0.03) 

* the diffusion coefficient is in cm, and the cross sections are in cm-1 
** cases 5 and 6 refer to two different positions in configuration 2 
a   (J/φ)left= 0.1178E-1; (J/φ)right= -0.5439E-2 
b   (J/φ)left= 0.9505E-2; (J/φ)right= -0.9505E-2 
d   calculated as 100*(reference-calculated)/reference 
e  heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux 
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Figure 4-6.  Flux distribution for case 6 
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 III  II  II  III 

 II  I  I   II 

 II  I  I  II 

 III  II  II  III 

V

0.4  0.90.97 3.26

 IV

3.26 3.26 3.26

4.1.3. Two-group two-dimensional problems 
 
Different types of assemblies from HAFAS core6 are used to test the convergence of the 
expansion series.  The results corresponding to three types of assemblies are shown here: 

- regular assembly A, (i=2, j=4) 
- voided (70%) assembly A70 (i=1, j=1) 
- controlled assembly A+ (i=4, j=4) 

where i and j specify the position of the assembly in the core: i stands for the row number 
and j for the column number (see Figure 3-10).   
 
For each assembly an infinite-medium (zero current) boundary condition is used as the 
initial state. Then different perturbations of the boundary condition (current-to-flux ratio) 
are considered. The perturbation values chosen are those found at the assembly/assembly 
interfaces in the HAFAS core. These current-to-flux ratios are determined for each 
assembly by performing fine-mesh diffusion calculations of the full core. They are 
calculated as the ratios of the average current to the average flux at the assembly 
interface: 
 

max

min

max

min

j j
x
ij jx

j j
j jx

x
ij j

j j

J y
J

y

=
+

+
=
=+

+

=

∆
=

Φ
Φ ∆

∑

∑
                                                 (4-2) 

 
x
ijJ + and x

ij
+Φ are the current on side x+ of mesh (i,j) in the assembly, and jy∆ is the length 

on y of mesh (i,j) (see figure below).                                                        
                                                                      y+ 
                                jmax                                                                                               
 
  
 
 
 
 
                               x-                                                             (i,j)  x+ 
 
 
 
 
 
                                jmin 
 
 
 
                                        imin                        y-                        imax 
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The flux and eigenvalue expansion coefficients and the high-order corrections for the 
homogenized cross sections are calculated and compared to each of the two following 
“reference” cases: 

1. reference 1 - a fine-mesh assembly calculation, using for the boundary condition 
the corresponding current-to-flux ratio obtained from the fine-mesh full core 
calculation (albedo determined as in Eq. 4-2) 

2. reference 2 - the flux and homogenized cross sections calculated based on the 
solution for the fine-mesh full core. 

 
The results for the homogenized parameters of assembly type A are shown in Tables 4-7 
and 4-8, and the flux RMS and maximum pin flux errors are shown in Table 4-9.  If 
reference case 1 is considered for comparison, a 2nd order correction is sufficient to 
reproduce the reference value for all homogenized parameters, as well as the flux 
distribution, irrespective of their 0th order error.  For example, the error in the fast group 
discontinuity factor on y+ is reduced from –12.2% to 0.0%.  If reference case 2 is 
considered for comparison, at the 3rd order of the correction the cross sections are almost 
reproduced and the error of the discontinuity factors are significantly reduced (for 
example from –12.2% to –1.4% for the discontinuity factor on y+).  The flux error for 
each mesh and group for this case are presented in Figure 4-7.  According to the figure, 
errors as large as –16.9% in the fast group and –16.6% in the thermal group are reduced 
to –1.9% and –3.6%, respectively.   
 
The results for assembly A70, which is a voided assembly, are shown in Tables 4-10 and 
4-11, as well as in Figure 4-8.  For this assembly, which is placed at the center of the 
core, the values of the standard (0th order) parameters are not far from the reference 2 
values.  A 2nd order correction is sufficient to reproduce the reference homogenized 
parameters and decrease the flux RMS to less than 1.0 (at 0.4 and 0.8 for the fast and 
thermal group, respectively).  
 
Assembly A+ is a controlled assembly, with the control blade regions in the x+ and y+ 
sides of the assembly.  The results for the homogenized parameters are shown in Tables 
4-12 and 4-13.  If reference 1 is considered for comparison, a 2nd order correction 
reproduces the homogenized cross sections and reduces the error in the discontinuity 
factor, which is up to about 10%, to less than 1%.  If reference 2 is used, a 3rd order 
correction reproduces the homogenized cross sections and discontinuity factors at two the 
interfaces of the assembly (y- and x-) that are not inside a control blade region.  The 
errors of the 3rd order corrected discontinuity factors on interfaces x+ and y+ (inside a 
control blade) are 1.3 and 2.9 for the fast and thermal group, respectively.  The 
comparison of the flux distributions is shown in Figures 4-9 and 4-10. 
 
It can be observed from the comparisons that there is a difference in results depending on 
the case used as reference.  The difference is very small for assemblies with small 
boundary perturbations (e.g. assembly A70), and increases with increasing magnitude of 
the perturbation (e.g. controlled assembly A+).  This difference is due to the 
approximation used for estimating the magnitude of the perturbation (the value of the 
current-to-flux ratio calculated according to Eq. 4-2).   
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Irrespective of the considered reference, the method converges: the errors of the 
homogenized parameters and flux distribution decrease with increasing order of the 
correction.  However, how well the corrected values approximate the reference values 
depend on the considered reference model.  If the reference considered is the fine-mesh 
assembly with an albedo boundary condition (calculated as in Eq. 4-2), the agreement of 
the corrected and the reference values is excellent, both for the homogenized parameters 
and flux distribution.  This can be explained by the absolute consistency between the 
compared cases: the current-to-flux ratio at each interface is constant over the interface.  
If the reference considered is the assembly data as provided by the full-core fine-mesh 
calculation, the agreement between the reference and the high-order corrected data is still 
excellent for the homogenized parameters, but not as good for the flux distribution (i.e. 
the flux in meshes adjacent or close to the boundary).  However, the errors of the 0th 
order values are significantly reduced by the high-order correction.   
 

Table 4-7.  Homogenized cross sections for assembly A 
(reference 1*) 

 

G
ro

up
  #

 

Order of 
pert. 

 
Cross 
Section 
(err**) 

 
 

reference 

 
 

0th order 

 

 
1st order 

 
 

2nd order 

 D 
(err)d 

1.4328 
 

1.4336 
(-0.1) 

1.4327 
(0.0) 

1.4328 
(0.0) 

 νσf 
(err) 

4.3113E-03 
 

4.2744E-03 
(0.9) 

4.3164E-03 
(-0.1) 

4.3111E-03 
(0.0) 

 σa 
(err) 

6.8537E-03 
 

6.8040E-03 
(0.7) 

6.8606E-03 
(0.1) 

6.8536E-03 
(0.0) 

1 fx+ 

(err) 
0.9335 

 
0.9199 
(1.4) 

0.9351 
(-0.2) 

0.9337 
(0.0) 

 fy+ 

(err) 
0.8198 

 
0.9199 
(-12.2) 

0.8111 
(1.1) 

0.8203 
(0.0) 

 fx- 

(err) 
0.8867 

 
0.9604 
(-8.3) 

0.8805 
(0.7) 

0.8864 
(-0.1) 

 fy- 

(err) 
1.0361 

 
0.9604 
(7.3) 

1.0365 
(0.0) 

1.0358 
(0.0) 

 D 
(err)d 

0.3447 
 

0.34444 
(0.1) 

0.3447 
(0.0) 

0.3447 
(0.0) 

 νσf 
(err) 

6.0960E-02 
 

6.0574E-02 
(0.6) 

6.1002E-02 
(-0.1) 

6.0960E-02 
(0.0) 

 σa 
(err) 

4.6193E-02 
 

4.5967E-02 
(0.5) 

4.6218E-02 
(0.1) 

4.6194E-02 
(0.0) 

2 fx+ 

(err) 
1.6036 

 
1.5251 
(4.9) 

1.6070 
(-0.2) 

1.6037 
(0.0) 

 fy+ 

(err) 
1.4335 

 
1.5251 
(-6.4) 

1.4260 
(0.5) 

1.4341 
(0.0) 

 fx- 

(err) 
1.2059 

 
1.2885 
(-6.9) 

1.1993 
(0.5) 

1.2058 
(0.0) 

 fy- 

(err) 
1.3281 

 
1.2885 
(3.0) 

1.3319 
(-0.3) 

1.3274 
(0.01) 

                                        * reference case = fine-mesh assembly with albedo boundary condition 
                                         ** calculated as 100*(reference-calculated)/reference 
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Table 4-8.  Homogenized cross sections for assembly A 
(reference 2*) 

 

G
ro

up
  #

 

Order of 
pert. 

 
Cross 
Section 
(err**) 

 
 

reference 

 
 

0th order 

 

 
1st order 

 
 

2nd order 

 
 

3rd order 

 D 
(err)d 

1.4328 
 

1.4336 
(-0.1) 

1.4327 
(0.0) 

1.4328 
(0.0) 

1.4328 
(0.0) 

 νσf 
(err) 

4.3111E-03 
 

4.2744E-03 
(0.9) 

4.3164E-03 
(-0.1) 

4.3111E-03 
(0.0) 

4.3115E-03 
(-0.1) 

 σa 
(err) 

6.8540E-03 
 

6.8040E-03 
(0.7) 

6.8606E-03 
(-0.1) 

6.8536E-03 
(0.0) 

6.8541E-03 
(0.0) 

1 fx+ 

(err) 
0.9313 

 
0.9199 
(1.2) 

0.9351 
(-0.4) 

0.9337 
(-0.3) 

0.9338 
(-0.3) 

 fy+ 

(err) 
0.8080 

 
0.9199 
(-13.9) 

0.8111 
(-0.4) 

0.8203 
(-1.5) 

0.8195 
(-1.4) 

 fx- 

(err) 
0.8838 

 
0.9604 
(-8.7) 

0.8805 
(0.4) 

0.8864 
(-0.3) 

0.8860 
(-0.2) 

 fy- 

(err) 
1.0534 

 
0.9604 
(8.8) 

1.0365 
(1.6) 

1.0358 
(1.7) 

1.0360 
(1.6) 

 D 
(err)d 

0.3448 
 

0.3444 
(0.1) 

0.3447 
(0.0) 

0.3447 
(0.0) 

0.3447 
(0.0) 

 νσf 
(err) 

6.1048E-02 
 

6.0574E-02 
(0.8) 

6.1002E-02 
(0.1) 

6.0960E-02 
(0.1) 

6.0962E-02 
(0.1) 

 σa 
(err) 

4.6247E-02 
 

4.5967E-02 
(0.6) 

4.6218E-02 
(0.1) 

4.6194E-02 
(0.1) 

4.6195E-02 
(0.1) 

2 fx+ 

(err) 
1.6036 

 
1.5251 
(4.9) 

1.6070 
(-0.2) 

1.6037 
(0.0) 

1.6039 
(0.0) 

 fy+ 

(err) 
1.4057 

 
1.5251 
(-8.5) 

1.4260 
(-1.4) 

1.4341 
(-2.0) 

1.4334 
(-2.0) 

 fx- 

(err) 
1.2012 

 
1.2885 
(-7.3) 

1.1993 
(0.2) 

1.2058 
(-0.4) 

1.2058 
(-0.3) 

 fy- 

(err) 
1.3377 

 
1.2885 
(3.7) 

1.3319 
(0.4) 

1.3274 
(0.8) 

1.3274 
(0.7) 

                          * reference case = fine-mesh full core 
                          ** calculated as 100*(reference-calculated)/reference 
 

Table 4-9.  Flux comparison for assembly A 
 

 Case 1*  Case 2**  Group 
#  0th order 3rd order 0th order 3rd order 
 RMS*** 8.5 0.0 9.5 1.6 
1 pin max error -14.7 -0.1 -16.9 2.6 
 RMS 6.5 0.0 8.5 2.4 
2 pin max error -12.4 -0.1 -16.6 -3.6 

                                                                 * reference case = fine-mesh assembly with albedo boundary condition 
                                                                 ** reference case = fine-mesh full core 
                                                                 *** calculated as in Eq. 4-1  
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Figure 4-7. Pin flux comparison for assembly A (reference 2) 
 
 

Table 4-10.  Homogenized cross sections for assembly A70 
(reference 2*) 

 

G
ro

up
  #

 

Order of 
pert. 

 
Cross 
Section 
(err**) 

 
 

reference 

 
 

0th order 

 

 
1st order 

 
 

2nd order 

 D 
(err)d 1.8775E+00 

1.8770E+00 
(0.0) 

1.8776E+00 
(0.0) 

1.8775E+00 
(0.0) 

 νσf 
(err) 3.9650E-03 

3.9574E-03 
(0.2) 

3.9652E-03 
(0.0) 

3.9659E-03 
(0.0) 

 σa 
(err) 6.1885E-03 

6.1800E-03 
(0.1) 

6.1887E-03 
(0.0) 

6.1886E-03 
(0.0) 

1 fx+ 

(err) 9.4563E-01 
9.6971E-01 

(-2.5) 
9. 4548E-01 

(0.0) 
9. 4637E-01 

(-0.1) 
 fy+ 

(err) 9. 4563E-01 
9.6971E-01 

(-2.5) 
9.4548E-01 

(0.0) 
9. 4637E-01 

(-0.1) 
 fx- 

(err) 9. 4073E-01 
9.3456E-01 

(0.7) 
9. 4232E-01 

(-0.2) 
9. 4195E-01 

(-0.1) 
 fy- 

(err) 9.4073E-01 
9.3456E-01 

(0.7) 
9. 4232E-01 

(-0.2) 
9. 4195E-01 

(-0.1) 
 D 

(err)d 6.0359E-01 
6.0370E-01 

(0.0) 
6.0337E-01 

(0.0) 
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(0.0) 
 νσf 

(err) 5.5032E-02 
5.5060E-02 

(-0.1) 
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(0.1) 
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(err) 4.1287E-02 
4.1303E-02 

(0.0) 
4.1262E-02 

(0.1) 
4.1262E-02 

(0.1) 
2 fx+ 

(err) 1.3081E+00 
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(1.0) 
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1.6112E+00 
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1. 6081E+00 

(-0.4) 
1. 6072E+00 

(-0.4) 
                                        * reference case = fine-mesh assembly with albedo boundary condition 
                                         ** calculated as 100*(reference-calculated)/reference 
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Table 4-11.  Flux comparison for assembly A70 
 

 Case 1*  Case 2**  Group 
#  0th order 3rd order 0th order 3rd order 
 RMS*** 1.8 0.0 1.6 0.4 
1 pin max error -2.4 0.0 -1.4 0.7 
 RMS 1.8 0.0 1.7 0.7 
2 pin max error 3.1 0.0 2.8 0.9 

       * reference case = fine-mesh assembly with albedo boundary condition 
       ** reference case = fine-mesh full core 
       *** calculated as in Eq. 4-1  

 
 

Table 4-12.  Homogenized cross sections for assembly A+ 
(reference 1*) 

 

G
ro

up
  #

 

Order of 
pert. 

 
Cross 
Section 
(err**) 

 
 

reference 

 
 

0th order 

 

 
1st order 

 
 

2nd order 

 D 
(err)d 

1.4216E+00 1.4201E+00 
(0.1) 

1.4216E+00 
(0.0) 

1.4216E+00 
(0.0) 

 νσf 
(err) 

4.3157E-03 4.3190E-03 
(-0.1) 

4.3223E-03 
(-0.2) 

4.3161E-03 
(0.0) 

 σa 
(err) 

9.0009E-03 9.2929E-03 
(-3.2) 

8.9953E-03 
(0.1) 

9.0026E-03 
(0.0) 

1 fx+ 

(err) 
7.4134E-01 8.1691E-01 

(-10.2) 
7.3673E-01 

(0.6) 
7.4149E-01 

(0.0) 
 fy+ 

(err) 
7.4134E-01 8.1691E-01 

 (-10.2) 
7. 3673E-01 

(0.6) 
7.4149E-01 

(0.0) 
 fx- 

(err) 
1.1482E+00 1.0402E+00 

 (9.4) 
1.1442E+00 

(0.4) 
1.1476E+00 

(0.1) 
 fy- 

(err) 
1.1482E+00 1.0402E+00 

(9.4) 
1.1442E+00 

(0.4) 
1.1476E+00 

(0.1) 
 D 

(err)d 
3.4774E-01 3.4844E-01 

(-0.2) 
3.4783E-01 

(0.0) 
3.4775E-01 

(0.0) 
 νσf 

(err) 
6.5818E-02 6.7078E-02 

(-1.9) 
6.5943E-02 

(-0.2) 
6.5838E-02 

(0.0) 
 σa 

(err) 
5.6881E-02 5.8881E-02 

(-3.5) 
5.6926E-02 

(0.1) 
5.6926E-02 

(0.1) 
2 fx+ 

(err) 
6.3445E-01 6.7231E-01 

(-6.0) 
6.3772E-01 

(-0.5) 
6.3504E-01 

(-0.1) 
 fy+ 

(err) 
6.3445E-01 6.7231E-01 

 (-6.0) 
6.3772E-01 

(-0.5) 
6.3504E-01 

(-0.1) 
 fx- 

(err) 
1.9563E+00 1.7640E+00 

(9.8) 
1.9346E+00 

(1.1) 
1.9521E+00 

(0.2) 
 fy- 

(err) 
1.9563E+00 1.7640E+00 

 (9.8) 
1.9346E+00 

(1.1) 
1.9521E+00 

(0.2) 
                                        * reference case = fine-mesh assembly with albedo boundary condition 
                                         ** calculated as 100*(reference-calculated)/reference 
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Figure 4-8. Pin flux comparison for assembly A70 (reference 2) 
 

 
Table 4-13.  Homogenized cross sections for assembly A+ 

(reference 2*) 
 

G
ro

up
  #

 

Order of 
pert. 

 
Cross 
Section 
(err**) 

 
 

reference 

 
 

0th order 

 

 
1st order 

 
 

2nd order 

 D 
(err)d 

1.4215E+00 1.4201E+00 
(0.1) 

1.4216E+00 
(0.0) 

1.4216E+00 
(0.0) 

 νσf 
(err) 

4.3123E-03 4.3190E-03 
(-0.2) 

4.3223E-03 
(-0.2) 

4.3161E-03 
(-0.1) 

 σa 
(err) 

9.0281E-03 9.2929E-03 
(-2.9) 

8.9953E-03 
(0.4) 

9.0026E-03 
(0.3) 

1 fx+ 

(err) 
7.5140E-01 8.1691E-01 

(-8.7) 
7.3673E-01 

(2.0) 
7.4149E-01 

(1.3) 
 fy+ 

(err) 
7.5140E-01 8.1691E-01 

(-8.7) 
7. 3673E-01 

(2.0) 
7.4149E-01 

(1.3) 
 fx- 

(err) 
1.1448E+00 1.0402E+00 

 (9.1) 
1.1442E+00 

(0.1) 
1.1476E+00 

(-0.2) 
 fy- 

(err) 
1.1448E+00 1.0402E+00 

(9.1) 
1.1442E+00 

(0.1) 
1.1476E+00 

(-0.2) 
 D 

(err)d 
3.4773E-01 3.4844E-01 

(-0.2) 
3.4783E-01 

(0.0) 
3.4775E-01 

(0.0) 
 νσf 

(err) 
6.5846E-02 6.7078E-02 

(-1.9) 
6.5943E-02 

(-0.1) 
6.5838E-02 

(0.0) 
 σa 

(err) 
5.7093E-02 5.8881E-02 

(-3.1) 
5.6926E-02 

(0.3) 
5.6926E-02 

(0.3) 
2 fx+ 

(err) 
6.5430E-01 6.7231E-01 

(-2.8) 
6.3772E-01 

(2.5) 
6.3504E-01 

(2.9) 
 fy+ 

(err) 
6.5430E-01 6.7231E-01 

(-2.8) 
6.3772E-01 

(2.5) 
6.3504E-01 

(2.9) 
 fx- 

(err) 
1.9472E+00 1.7640E+00 

(9.4) 
1.9346E+00 

(0.6) 
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(-0.3) 
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(err) 
1.9472E+00 1.7640E+00 

 (9.4) 
1.9346E+00 

(0.6) 
1.9521E+00 

(-0.3) 
                                          * reference case = fine-mesh full core 
                                         ** calculated as 100*(reference-calculated)/reference 
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Table 4-14.  Flux comparison for assembly A+ 

 
 Case 1*  Case 2**  Group # 
 0th order 3rd order 0th order 3rd order 

1 RMS*** 12.3 0.0 10.3 2.2 
 pin max error 10.0 0.1 -14.5 -3.1 

2 RMS 11.8 0.1 10.2 3.7 
 pin max error 17.4 0.2 12.1 -6.2 

       * reference case = fine-mesh assembly with albedo boundary condition 
       ** reference case = fine-mesh full core 
       *** calculated as in Eq. 4-1  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 4-9. Pin flux comparison for assembly A+ (reference 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4-10. Pin flux comparison for assembly A+ (reference 1) 
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4.2. Implemention of the high-order cross section homogenization method into nodal  
       diffusion code 
 
4.2.1 One-group one-dimensional problems 
 
It was found that the new homogenization method is very accurate as compared to the 
standard homogenization technique based on the generalized equivalence theory.  The 
results of the nodal calculations (performed as explained is section 2.3) for configuration 
2 (see Figure 3-1), with the homogenized parameters corrected up to the 4th order, are 
shown in Table 4-15.  Only the first four assemblies are shown due to symmetry.  It can 
be seen that there is a large improvement compared to the 0th order (standard GET) both 
for the assembly-integrated nodal flux and the assembly-integrated reconstructed flux.  
The large difference (of up to 418%) between the assembly-integrated nodal-flux and the 
assembly-integrated reference flux is reduced to less than 1.2% at the 4th order.  The 
results are similar for the assembly-integrated reconstructed flux, where the large 0th 
order difference (up to 62%) is reduced to less than 2.7% at the 4th order. 

 
Table 4-15. Assembly Integrated Flux for Configuration 2 

 
Order of 

Perturbation 
Assembly 
Position 

Reference Nodal Errora 
(%) 

Reconstructed Error 
(%) 

 1 2.370 1.082 -54 2.872  21 
0 2 0.658 0.913  39 0.250 -62 
 3 0.357 1.057  196 0.310 -13 
 4 0.173 0.898  418 0.105 -39 
       
 1 2.370 2.827  19 2.823  19 

1 2 0.658 0.453 -31 0.454 -31 
 3 0.357 0.188  -47 0.188 -47 
 4 0.173 0.068  -61 0.068 -61 
       
 1 2.370 2.281 -3.8 2.281 -3.7 

2 2 0.658 0.722  9.8 0.720  9.5 
 3 0.357 0.381  6.8 0.374  5.0 
 4 0.173 0.200  15 0.196  13 
       
 1 2.370 2.465  4.0 2.487 4.9 

3 2 0.658 0.641 -2.6 0.650 -1.2 
 3 0.357 0.304 -15 0.311 -13 
 4 0.173 0.144 -17 0.146 -16 
       
 1 2.370 2.382  0.5 2.386  0.6 

4 2 0.658 0.666  1.2 0.671  1.9 
 3 0.357 0.360  0.9 0.366  2.7 
 4 0.173 0.175  0.9 0.177  2.2 
       

aDefined as 100*(calculated-reference)/reference 
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4.2.2 Two-group one-dimensional problems 
 
Results for configurations 1 and 2 
 
Configuration 1 is a very simple configuration, with small gradients of the flux at the 
node interface (see Figure 3-2).  For this configuration, the use of the standard GET nodal 
parameters leads to a good agreement of the nodal calculations with the fine-mesh core 
calculations.  That is, there is no need to correct the nodal parameters in this case. 
Therefore, only results for configurations 2 are shown in this section.  
 
The distribution of the nodal flux at different orders of correction for the nodal 
parameters is compared to the reference distribution in Figures 4-11 and 4-12 for the fast 
flux and thermal flux, respectively.  The full core fine-mesh calculation is taken as the 
reference.  The node-integrated flux as well as the assembly reconstructed fine-mesh flux 
is compared to the assembly reference flux, for different orders of the correction of the 
nodal cross sections, in Tables 4-16 and 4-17 for the fast and thermal flux, respectively.  
Only results for nodes 1 to 4 are shown, given the symmetry.   
 
It can be seen that the 0th order node-integrated fast flux overestimates the reference 
value in those nodes where assembly 1 is positioned (3.2% and 2.3%), but underestimates 
the reference value in the nodes where assembly 3 is present (-7.1% and –7.7%).  The 
errors corresponding to the 0th order thermal flux in each node (up to 14% in absolute 
value) are about twice as large as the fast flux errors.  The difference is reduced to less 
than 1% at the third order, for both groups, and becomes less than 0.5% at the fourth 
order.   
 
The error of the assembly reconstructed flux, at a high order of the correction, has the 
same order of magnitude as that of the node-integrated flux in the corresponding node.  
The first and second order corrected reconstructed fine-mesh flux is compared to the 
reference fine-mesh flux distribution in Figure 4-13 for group 1 and in Figure 4-14 for 
group 2.  Even the reconstructed flux shape corresponding to the second order 
approximates the shape of the reference flux in both groups very well.  At the fourth 
order, not shown in the figures, the corrected and the reference flux shapes are practically 
identical. 
 
The distribution of the zeroth order reconstructed flux is shown in Figure 4-15 for the fast 
flux and in Figure 4-16 for the thermal flux.  The difference between the distributions is 
more pronounced at the center of the core for both the thermal and the fast fluxes. 
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Figure 4-11. Nodal fast flux distribution in core 2 
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Figure 4-12. Nodal thermal flux distribution in core 2 
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Table 4-16. Assembly fast flux for core 2 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Errora 

 1 1.3614 1.4051 3.20 1.3901 2.10 
0 2 0.6650 0.6176 -7.14 0.6536 -1.72 
 3 0.5465 0.5593 2.33 0.5456 -0.17 
 4 0.3807 0.3514 -7.70 0.3366 -11.60 
 1 1.3614 1.4376 5.59 1.4404 5.80 

1 2 0.6650 0.6404 -3.69 0.6416 -3.51 
 3 0.5465 0.5142 -5.91 0.5146 -5.83 
 4 0.3807 0.3450 -9.39 0.3455 -9.25 
 1 1.3614 1.3409 -1.51 1.3402 -1.56 

2 2 0.6650 0.6748 1.47 0.6752 1.53 
 3 0.5465 0.5530 1.18 0.5528 1.15 
 4 0.3807 0.3907 2.62 0.3909 2.66 
 1 1.3614 1.3648 0.25 1.3650 0.26 

3 2 0.6650 0.6674 0.37 0.6676 0.39 
 3 0.5465 0.5416 -0.89 0.5416 -0.90 
 4 0.3807 0.3793 -0.38 0.3794 -0.36 
 1 1.3614 1.3611 -0.02 1.3611 -0.03 

4 2 0.6650 0.6676 0.39 0.6677 0.40 
 3 0.5465 0.5442 -0.43 0.5441 -0.44 
 4 0.3807 0.3814 0.16 0.3814 0.18 
 1 1.3614 1.3595 -0.14 1.3595 -0.14 

5 2 0.6650 0.6678 0.42 0.6679 0.43 
 3 0.5465 0.5452 -0.24 0.5451 -0.25 
 4 0.3807 0.3822 0.38 0.3822 0.39 
 1 1.3614 1.3599 -0.11 1.3599 -0.11 

6 2 0.6650 0.6677 0.41 0.6678 0.42 
 3 0.5465 0.5450 -0.29 0.5449 -0.30 
 4 0.3807 0.3820 0.32 0.3820 0.34 
 1 1.3614 1.3600 -0.11 1.3599 -0.11 

7 2 0.6650 0.6678 0.42 0.6678 0.43 
 3 0.5465 0.5449 -0.29 0.5448 -0.31 
 4 0.3807 0.3819 0.32 0.3820 0.33 
 1 1.3614 1.3600 -0.11 1.3600 -0.11 

8 2 0.6650 0.6678 0.42 0.6678 0.43 
 3 0.5465 0.5449 -0.30 0.5448 -0.31 
 4 0.3807 0.3819 0.31 0.3820 0.33 
 1 1.3614 1.3600 -0.11 1.3600 -0.11 

9 2 0.6650 0.6678 0.42 0.6678 0.43 
 3 0.5465 0.5449 -0.30 0.5448 -0.31 
 4 0.3807 0.3819 0.31 0.3820 0.33 
 1 1.3614 1.3600 -0.11 1.3600 -0.11 

10 2 0.6650 0.6678 0.42 0.6678 0.43 
 3 0.5465 0.5449 -0.30 0.5448 -0.31 
 4 0.3807 0.3819 0.31 0.3820 0.33 

aDefined as 100*(calculated-reference)/reference 
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Table 4-17.  Assembly thermal flux for core 2 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Errora 

 1 0.3920 0.4148 5.80 0.3699 -5.65 
0 2 0.1469 0.1269 -13.60 0.1761 19.88 
 3 0.1557 0.1646 5.71 0.1462 -6.08 
 4 0.0841 0.0723 -14.06 0.1004 19.42 
 1 0.3920 0.4111 4.85 0.4082 4.13 

1 2 0.1469 0.1395 -5.00 0.1383 -5.81 
 3 0.1557 0.1467 -5.78 0.1463 -6.05 
 4 0.0841 0.0759 -9.71 0.0754 -10.33 
 1 0.3920 0.3867 -1.37 0.3874 -1.19 

2 2 0.1469 0.1485 1.11 0.1481 0.82 
 3 0.1557 0.1577 1.33 0.1579 1.43 
 4 0.0841 0.0862 2.50 0.0861 2.36 
 1 0.3920 0.3931 0.26 0.3929 0.22 

3 2 0.1469 0.1471 0.11 0.1469 0.02 
 3 0.1557 0.1545 -0.76 0.1546 -0.72 
 4 0.0841 0.0837 -0.50 0.0836 -0.57 
 1 0.3920 0.3921 0.00 0.3921 0.01 

4 2 0.1469 0.1471 0.16 0.1470 0.10 
 3 0.1557 0.1552 -0.30 0.1553 -0.25 
 4 0.0841 0.0841 0.04 0.0841 -0.02 
 1 0.3920 0.3916 -0.12 0.3916 -0.12 

5 2 0.1469 0.1471 0.18 0.1471 0.13 
 3 0.1557 0.1555 -0.11 0.1556 -0.07 
 4 0.0841 0.0843 0.25 0.0843 0.19 
 1 0.3920 0.3917 -0.09 0.3917 -0.09 

6 2 0.1469 0.1471 0.16 0.1471 0.12 
 3 0.1557 0.1554 -0.16 0.1555 -0.11 
 4 0.0841 0.0843 0.20 0.0842 0.14 
 1 0.3920 0.3917 -0.08 0.3917 -0.08 

7 2 0.1469 0.1471 0.17 0.1471 0.12 
 3 0.1557 0.1554 -0.17 0.1555 -0.12 
 4 0.0841 0.0843 0.19 0.0842 0.13 
 1 0.3920 0.3917 -0.08 0.3917 -0.08 

8 2 0.1469 0.1471 0.17 0.1471 0.12 
 3 0.1557 0.1554 -0.17 0.1555 -0.12 
 4 0.0841 0.0843 0.19 0.0842 0.13 
 1 0.3920 0.3917 -0.08 0.3917 -0.08 

9 2 0.1469 0.1471 0.17 0.1471 0.12 
 3 0.1557 0.1554 -0.17 0.1555 -0.12 
 4 0.0841 0.0843 0.19 0.0842 0.13 
 1 0.3920 0.3917 -0.08 0.3917 -0.08 

10 2 0.1469 0.1471 0.17 0.1471 0.12 
 3 0.1557 0.1554 -0.17 0.1555 -0.12 
 4 0.0841 0.0843 0.19 0.0842 0.13 

aDefined as 100*(calculated-reference)/reference 
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 Figure 4-13. High-order reconstructed flux in group 1 for core 2 
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Figure 4-14. High-order reconstructed flux in group 2 for core 2 
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Figure 4-15. Zeroth-order reconstructed flux in group 1 for core 2 
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Figure 4-16. Zeroth-order reconstructed flux in group 2 for core 2 
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Results for the newly developed benchmark configurations (A, B and C) 
 
As it was for the two configurations discussed in the previous section, the reference case 
here is a fine-mesh calculation of the full configuration with a zero current boundary 
condition.  Six meshes are considered for each material region, giving a total of 60 
meshes per assembly and 960 meshes per core.  Because of the symmetry, only the 
distribution for the left half of the configuration is shown.   
 
The multiplication constant (keff) for each core (see Figure 3-5) at different orders of the 
correction for the nodal cross sections is given in Table 4-18.  The distribution of the 
reconstructed flux, calculated as specified in section 2-3, is shown in Figures 4-17 to 4-
23.  Only the first order reconstructed flux is shown, the higher-order distributions being 
almost identical to the reference distribution for each core.    It is interesting to note that, 
the 0th order (standard GET) keff is the same as the reference value for cores A and C 
(within 10-3) and is also very close in the case of core B (within 10-2). However, the flux 
distribution is not approximate well by the 0th order results.  The difference is mostly in 
the fast group, and it is more pronounced in the case of the more heterogeneous core C.  
The node-integrated flux from the nodal calculation and the assembly-integrated 
reconstructed flux for each group are compared to the reference results in Tables 4-19 to 
4-15.  The difference of up to 5% in the node-integrated flux at the zeroth order is 
reduced to less than 1% at the third order.      
 

            
 

Table 4-18.  Keff for cores A, B and C 
 

 
Core 

 
Kref

* 
 

Order of 
correction 

 
Kcalc 

 
Kcalc- Kref  

(mk**) 
  0 1.0134 0.4 

A 1.0130 1 1.0129 -0.1 
  2 1.0129 -0.1 
  3 1.0128 -0.2 
  0 1.0134 10.0 

B 1.0034 1 1.0032 -0.2 
  2 1.0031 -0.1 
  3 1.0032 -0.2 
  0 0.9979 1.0 

C 0.9969 1 0.9964 -0.5 
  2 0.9963 -0.6 
  3 0.9963 -0.6 

                                                                   * from full core fine-mesh calculations with 6 meshes per material region  
                                       ** 1mk=10-3 
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Figure 4-18.  Reconstructed fast flux in core A 
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Figure 4-19.  Reconstructed thermal flux in core A 
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Figure 4-20.  Reconstructed fast flux in core B 
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Figure 4-21.  Reconstructed thermal flux in core B 
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 Figure 4-22.  Reconstructed fast flux in core C 
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 Figure 4-23.  Reconstructed thermal flux in core C 



 

74 
 

 

 
 

Table 4-19. Assembly fast flux in core A 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.5903 0.5774 -2.19 0.5586 -5.37 
 2 0.8361 0.8579 2.61 0.8393 0.39 
 3 0.8516 0.8555 0.46 0.8617 1.19 

0 4 0.8258 0.8267 0.11 0.8335 0.93 
 5 0.7950 0.7924 -0.34 0.7983 0.42 

 6 0.7892 0.7863 -0.36 0.7926 0.43 
 7 0.7792 0.7743 -0.63 0.7803 0.14 
 8 0.7920 0.7892 -0.35 0.7954 0.42 
       
       
 1 0.5903 0.5818 -1.44 0.5814 -1.50 
 2 0.8361 0.8283 -0.93 0.8290 -0.85 
 3 0.8516 0.8552 0.42 0.8550 0.40 

1 4 0.8258 0.8293 0.41 0.8293 0.42 
 5 0.7950 0.7984 0.42 0.7983 0.41 
 6 0.7892 0.7916 0.30 0.7916 0.31 
 7 0.7792 0.7812 0.25 0.7811 0.24 
 8 0.7920 0.7934 0.17 0.7934 0.18 
       
       
 1 0.5903 0.5907 0.07 0.5902 -0.02 
 2 0.8361 0.8305 -0.67 0.8311 -0.60 
 3 0.8516 0.8496 -0.23 0.8494 -0.26 

2 4 0.8258 0.8256 -0.03 0.8257 -0.02 
 5 0.7950 0.7965 0.18 0.7965 0.18 
 6 0.7892 0.7909 0.22 0.7910 0.22 
 7 0.7792 0.7814 0.28 0.7813 0.27 
 8 0.7920 0.7940 0.24 0.7940 0.25 
       
       
 1 0.5903 0.5892 -0.18 0.5888 -0.26 
 2 0.8361 0.8326 -0.42 0.8331 -0.36 
 3 0.8516 0.8513 -0.04 0.8511 -0.06 

3 4 0.8258 0.8262 0.05 0.8263 0.05 
 5 0.7950 0.7963 0.16 0.7963 0.15 
 6 0.7892 0.7902 0.13 0.7903 0.14 
 7 0.7792 0.7804 0.16 0.7804 0.15 
 8 0.7920 0.7929 0.11 0.7929 0.11 
       

aDefined as 100*(calculated-reference)/reference 
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Table 4-20. Assembly thermal flux in core A 
 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.1809 0.1809 -0.04 0.1719 -5.00 
 2 0.2186 0.2201 0.68 0.2087 -4.52 
 3 0.2370 0.2385 0.61 0.2419 2.09 

0 4 0.2274 0.2282 0.34 0.2313 1.71 
 5 0.2227 0.2216 -0.47 0.2253 1.20 

 6 0.2177 0.2169 -0.36 0.2202 1.13 
 7 0.2178 0.2166 -0.56 0.2200 0.98 
 8 0.2186 0.2176 -0.46 0.2210 1.09 
       
       
 1 0.1809 0.1791 -0.99 0.1795 -0.77 
 2 0.2186 0.2159 -1.22 0.2152 -1.53 
 3 0.2370 0.2381 0.48 0.2383 0.56 

1 4 0.2274 0.2284 0.44 0.2284 0.42 
 5 0.2227 0.2236 0.43 0.2237 0.45 
 6 0.2177 0.2183 0.28 0.2183 0.25 
 7 0.2178 0.2184 0.29 0.2185 0.32 
 8 0.2186 0.2189 0.16 0.2189 0.14 
       
       
 1 0.1809 0.1817 0.45 0.1822 0.71 
 2 0.2186 0.2163 -1.04 0.2157 -1.30 
 3 0.2370 0.2366 -0.17 0.2368 -0.09 

2 4 0.2274 0.2274 0.01 0.2274 -0.01 
 5 0.2227 0.2231 0.19 0.2231 0.21 
 6 0.2177 0.2181 0.19 0.2181 0.17 
 7 0.2178 0.2185 0.31 0.2185 0.34 
 8 0.2186 0.2191 0.23 0.2191 0.22 
       
       
 1 0.1809 0.1813 0.21 0.1818 0.47 
 2 0.2186 0.2168 -0.82 0.2162 -1.08 
 3 0.2370 0.2371 0.04 0.2373 0.12 

3 4 0.2274 0.2276 0.08 0.2275 0.06 
 5 0.2227 0.2231 0.18 0.2231 0.20 
 6 0.2177 0.2180 0.11 0.2179 0.08 
 7 0.2178 0.2182 0.19 0.2183 0.22 
 8 0.2186 0.2188 0.10 0.2188 0.08 
       

aDefined as 100*(calculated-reference)/reference 
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Table 4-21. Assembly fast flux in core B 
 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.5909 0.5791 -2.01 0.5800 -1.85 
 2 0.8189 0.8414 2.75 0.8414 2.75 
 3 0.8099 0.8118 0.24 0.8113 0.18 

0 4 0.8255 0.8317 0.75 0.8319 0.78 
 5 0.7987 0.7934 -0.67 0.7929 -0.72 

 6 0.8173 0.8172 -0.01 0.8175 0.02 
 7 0.7947 0.7855 -1.15 0.7851 -1.20 
 8 0.8151 0.8114 -0.45 0.8113 -0.46 
       
       
 1 0.5909 0.5870 -0.67 0.5814 -1.50 
 2 0.8189 0.8143 -0.57 0.8290 -0.85 
 3 0.8099 0.8153 0.67 0.8550 0.40 

1 4 0.8255 0.8283 0.34 0.8293 0.42 
 5 0.7987 0.8007 0.26 0.7983 0.41 
 6 0.8173 0.8165 -0.10 0.7916 0.31 
 7 0.7947 0.7944 -0.03 0.7811 0.24 
 8 0.8151 0.8144 -0.09 0.7934 0.18 
       
       
 1 0.5909 0.5949 0.68 0.5945 0.60 
 2 0.8189 0.8178 -0.13 0.8185 -0.06 
 3 0.8099 0.8110 0.14 0.8106 0.09 

2 4 0.8255 0.8252 -0.04 0.8254 -0.01 
 5 0.7987 0.7988 0.02 0.7985 -0.02 
 6 0.8173 0.8154 -0.23 0.8157 -0.20 
 7 0.7947 0.7940 -0.09 0.7937 -0.12 
 8 0.8151 0.8136 -0.19 0.8136 -0.18 
       
       
 1 0.5909 0.5934 0.43 0.5930 0.35 
 2 0.8189 0.8193 0.05 0.8199 0.12 
 3 0.8099 0.8124 0.31 0.8120 0.26 

3 4 0.8255 0.8258 0.03 0.8261 0.07 
 5 0.7987 0.7988 0.02 0.7985 -0.02 
 6 0.8173 0.8150 -0.28 0.8153 -0.25 
 7 0.7947 0.7933 -0.17 0.7931 -0.20 
 8 0.8151 0.8127 -0.29 0.8128 -0.28 
       

aDefined as 100*(calculated-reference)/reference 
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Table 4-22. Assembly thermal flux in core B 
 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.1811 0.1812 0.06 0.1807 -0.24 
 2 0.2138 0.2159 0.97 0.2167 1.37 
 3 0.2311 0.2327 0.66 0.2327 0.67 

0 4 0.2112 0.2124 0.61 0.2119 0.37 
 5 0.2290 0.2279 -0.49 0.2282 -0.32 

 6 0.2092 0.2087 -0.23 0.2082 -0.44 
 7 0.2284 0.2260 -1.03 0.2263 -0.94 
 8 0.2254 0.2238 -0.72 0.2238 -0.71 
       
       
 1 0.1811 0.1806 -0.24 0.1810 -0.03 
 2 0.2138 0.2119 -0.91 0.2112 -1.23 
 3 0.2311 0.2330 0.82 0.2334 0.98 

1 4 0.2112 0.2115 0.15 0.2112 0.02 
 5 0.2290 0.2299 0.42 0.2302 0.53 
 6 0.2092 0.2085 -0.33 0.2082 -0.47 
 7 0.2284 0.2287 0.14 0.2289 0.24 
 8 0.2254 0.2251 -0.12 0.2250 -0.16 
       
       
 1 0.1811 0.1830 1.04 0.1834 1.29 
 2 0.2138 0.2126 -0.56 0.2120 -0.84 
 3 0.2311 0.2319 0.31 0.2322 0.47 

2 4 0.2112 0.2107 -0.21 0.2105 -0.33 
 5 0.2290 0.2294 0.19 0.2297 0.32 
 6 0.2092 0.2082 -0.44 0.2080 -0.57 
 7 0.2284 0.2286 0.09 0.2288 0.20 
 8 0.2254 0.2249 -0.22 0.2248 -0.26 
       
       
 1 0.1811 0.1825 0.79 0.1830 1.04 
 2 0.2138 0.2130 -0.39 0.2123 -0.67 
 3 0.2311 0.2323 0.49 0.2326 0.65 

3 4 0.2112 0.2109 -0.14 0.2106 -0.26 
 5 0.2290 0.2294 0.20 0.2297 0.32 
 6 0.2092 0.2081 -0.50 0.2078 -0.63 
 7 0.2284 0.2284 0.01 0.2287 0.11 
 8 0.2254 0.2247 -0.31 0.2246 -0.35 
       

aDefined as 100*(calculated-reference)/reference 
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Table 4-23. Assembly fast flux in core C 
 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.5235 0.5181 -5.01 0.4980 -4.88 
 2 0.7150 0.7068 -0.22 0.7135 -0.22 
 3 0.7219 0.7196 -2.97 0.7005 -2.97 

0 4 0.8821 0.8763 1.45 0.8953 1.50 
 5 0.8119 0.8135 -1.24 0.8011 -1.32 

 6 0.9195 0.9182 2.85 0.9464 2.94 
 7 0.7841 0.7910 0.22 0.7846 0.06 
 8 0.8862 0.9010 2.30 0.9066 2.30 
       
       
 1 0.5235 0.5181 -1.04 0.5179 -1.08 
 2 0.7150 0.7068 -1.14 0.7073 -1.09 
 3 0.7219 0.7196 -0.32 0.7193 -0.36 

1 4 0.8821 0.8763 -0.66 0.8766 -0.62 
 5 0.8119 0.8135 0.20 0.8131 0.15 
 6 0.9195 0.9182 -0.14 0.9186 -0.10 
 7 0.7841 0.7910 0.87 0.7906 0.82 
 8 0.8862 0.9010 1.66 0.9011 1.68 
       
       
 1 0.5235 0.5235 -0.01 0.5231 -0.08 
 2 0.7150 0.7099 -0.72 0.7105 -0.63 
 3 0.7219 0.7198 -0.30 0.7190 -0.40 

2 4 0.8821 0.8764 -0.64 0.8772 -0.55 
 5 0.8119 0.8120 0.02 0.8112 -0.08 
 6 0.9195 0.9182 -0.14 0.9190 -0.05 
 7 0.7841 0.7905 0.82 0.7898 0.72 
 8 0.8862 0.8936 0.83 0.8939 0.87 
       
       
 1 0.5235 0.5216 -0.36 0.5212 -0.44 
 2 0.7150 0.7101 -0.70 0.7107 -0.61 
 3 0.7219 0.7203 -0.23 0.7195 -0.33 

3 4 0.8821 0.8778 -0.49 0.8785 -0.40 
 5 0.8119 0.8129 0.12 0.8121 0.02 
 6 0.9195 0.9188 -0.07 0.9196 0.01 
 7 0.7841 0.7899 0.74 0.7891 0.64 
 8 0.8862 0.8926 0.72 0.8930 0.76 
       

aDefined as 100*(calculated-reference)/reference 
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Table 4-24. Assembly thermal flux in core C 
 
 

Order of 
Perturbation 

Assembly 
Position 

Reference Nodal Errora Reconstructed Error 

       
 1 0.1604 0.1555 -3.09 0.1550 -3.36 
 2 0.1873 0.1835 -2.05 0.1846 -1.45 
 3 0.2200 0.2172 -1.25 0.2164 -1.62 

0 4 0.2296 0.2303 0.31 0.2306 0.42 
 5 0.2491 0.2486 -0.20 0.2486 -0.21 

 6 0.2382 0.2434 2.19 0.2427 1.89 
 7 0.2426 0.2442 0.65 0.2449 0.92 
 8 0.2285 0.2313 1.21 0.2312 1.19 
       
       
 1 0.1604 0.1591 -0.82 0.1593 -0.70 
 2 0.1873 0.1850 -1.26 0.1846 -1.48 
 3 0.2200 0.2195 -0.20 0.2198 -0.07 

1 4 0.2296 0.2278 -0.78 0.2274 -0.94 
 5 0.2491 0.2498 0.26 0.2501 0.41 
 6 0.2382 0.2374 -0.34 0.2370 -0.51 
 7 0.2426 0.2449 0.92 0.2452 1.07 
 8 0.2285 0.2322 1.62 0.2321 1.56 
       
       
 1 0.1604 0.1609 0.31 0.1613 0.55 
 2 0.1873 0.1852 -1.16 0.1845 -1.50 
 3 0.2200 0.2201 0.07 0.2209 0.40 

2 4 0.2296 0.2273 -1.02 0.2265 -1.35 
 5 0.2491 0.2501 0.38 0.2509 0.70 
 6 0.2382 0.2369 -0.53 0.2361 -0.86 
 7 0.2426 0.2456 1.22 0.2464 1.54 
 8 0.2285 0.2301 0.68 0.2297 0.53 
       
       
 1 0.1604 0.1603 -0.05 0.1607 0.19 
 2 0.1873 0.1852 -1.15 0.1846 -1.48 
 3 0.2200 0.2203 0.15 0.2210 0.47 

3 4 0.2296 0.2276 -0.88 0.2269 -1.20 
 5 0.2491 0.2504 0.49 0.2512 0.81 
 6 0.2382 0.2370 -0.47 0.2363 -0.80 
 7 0.2426 0.2454 1.16 0.2462 1.47 
 8 0.2285 0.2298 0.58 0.2295 0.43 
       

aDefined as 100*(calculated-reference)/reference 
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V. SUMMARY AND CONCLUSION 
 
The main objective of this project was to develop a new high-order cross section 
homogenization method based on the boundary condition perturbation theory to improve 
the accuracy of nodal diffusion methods within the context of the GET.  The new 
homogenization method corrects the homogenized parameters and discontinuity factors 
for the effect of the core environment (node-to-node leakage), to an arbitrary order of 
accuracy, by expanding them in terms of the node surface current-to-flux ratios.  The 
method utilizes two adjoint functions to determine the expansion coefficients.  Since 
these adjoint functions are solutions to the infinite medium problem (zero current-to-flux 
ratio), the expansion coefficients can be precomputed and included with the standard 
homogenization parameters for use by a nodal code.  As a result, the nodal method has 
the capability of achieving an arbitrarily accurate solution by efficiently updating 
(correcting) the homogenized parameters, including the discontinuity factor, as it 
computes the node interface current-to-flux ratio.  The level of accuracy for the high-
order corrected reactor flux solution is close to that of the fine-mesh calculation, which 
would be computationally expensive and impractical to determine directly at the core 
level. 
 
The numerical implementation of the homogenization method required the development 
of a fine-mesh lattice code capable of providing, along with the standard homogenized 
parameters, the two adjoint functions (the adjoint flux and an adjoint Green’s function) as 
additional homogenization parameters.  When going from one-group to multigroup, the 
forms of the equations to be solved and of the expressions to be evaluated become more 
complex, due to energy coupling between groups.  The method was first tested and 
implemented for simple problems (one-group, 1-D geometry).  The work was then 
extended to more complex (two-group 1-D and then 2-D geometry) problems. The main 
difficulty requiring a substantial effort was the numerical implementation of the solution 
method for precomputing the Green’s function.  A fine-mesh lattice code with the 
capability mentioned above was developed for each of the three sets of problems: one-
speed 1-D, two-group 1-D and two-group 2-D.     
 
In this project, it was shown that the perturbation expansion series for the homogenized 
cross sections and discontinuity factors converge in a multigroup case.  This is new in 
that it has not been shown before in the literature.  The benchmark configurations 
consisted of two types of BWR assemblies in slab geometry for the one-dimensional case 
and different types of assemblies in the HAFAS core for the two-dimensional case.  The 
benchmark configurations were analyzed for various magnitudes of the perturbation in 
the boundary condition.  It was shown that the perturbation method achieves an excellent 
accuracy: the reference homogenized cross sections and discontinuity factors are almost 
exactly reproduced.   
 
The new homogenization method was numerically implemented at the nodal level, in the 
context of the GET, for one-speed 1-D, as well as for two-group 1-D configurations.  For 
each of these two types of configurations, a finite-difference coarse-mesh code with a 
bilinear intra-nodal flux shape was developed.  As compared to a standard nodal code for 
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solving the nodal diffusion equations, which has two levels of calculation (source 
iteration and flux iteration), this code has an additional level (iteration) in which the the 
homogenized parameters are corrected. Nodal equations were developed for 
implementing the homogenization method at the nodal level for two-group 2-D problems, 
and their numerical implementation is in progress.  The code for solving the nodal 
equations in this case is based on a transverse integrated method with a nodal expansion 
used for solving the transverse-integrated equations.  The associated system of equations 
is solved by employing a non-linear iterative strategy.  For the 2-D case some difficulty 
might arise in determining a surface-dependent boundary condition (current-to-flux ratio) 
from node-averaged quantities.  Note that the Green’s function is not constant at the node 
interface.  As a first approximation, the expansion parameter in the 2-D case would be 
taken as an average over the node surface, which is consistent with the GET assumption. 
 
The testing of the new homogenization method at the nodal level (for one- and two-group 
one-dimensional problems) was performed on five benchmark configurations typical of a 
BWR, from mildly to highly heterogeneous.  Three of these five benchmarks, in which 
each assembly is of the GE-9 bundle design, were newly developed because of the need 
for more realistic benchmark configurations.  It is anticipated that the technical 
community in reactor physics and math and computations will benefit from the new 
benchmarks developed in this study.  It was shown that the homogenization method 
provides excellent results.  For all of the analyzed configurations, the node-integrated 
flux is within 1.2% of the assembly reference (fine-mesh) flux in all nodes for each 
group.  There is a significant improvement from the zeroth order case (standard GET), in 
which the node-averaged flux has a large error (e.g., up to 8% in group 1 and up to 14% 
in group 2 for some of the analyzed configurations).  It was also shown that the 
reconstructed fine-mesh flux (or equivalently the power distribution) in the core 
approximates the reference value very well.  The reference flux distribution is almost 
reproduced by the third order correction. 
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Appendix A 
 
 

Discretization of the equations for Green’s function  
 
 
Let’s consider Eqs. (2-21) for the four components of the Green’s function ( )0, xxghΨ .   
The discretization in slab geometry of the first of these equations is shown here, the 
procedure is similar for the other three. 
 

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( ) ( ) ( )01,0002121012

01111011

,

,

xxxxxxxx

xxxxxxD

fs

fr

ϕδχνσλσ

χνσλσ

−−=Ψ+

−Ψ−+∇∇−
                        (A-1) 

 
Let the domain (in the x direction) where the equation should be solved be divided into N 
meshes, such that each mesh has constant material properties over the mesh.  Equation 
(A-1) is integrated over a mesh i (see figure below), from xi-1/2 to xi+1/2.  The functions 

( )011 , xxΨ  and ( )021 , xxΨ  are considered constant over the mesh: 
 

( ) ( )jixx ,, 11011 Ψ≡Ψ  
( ) ( )jixx ,, 21021 Ψ≡Ψ                                                (A-2) 

 
 

 
 
 
 
 

 
 
 
 
 

Figure A-1.  Space Discretization 
 

Let’s consider the integration of the “leakage” term first: 
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with ( )2/111 +

+ Ψ≡ ii xϕ , ( )2/111 −
− Ψ≡ ii xϕ , ( )ii x11Ψ≡ϕ , and 2/2/1 iii xx ∆+= − .  The 

function ( )011 , xxΨ  has been renamed and the x0 dependence has been dropped for 
convenience.  The following boundary conditions are considered at the interface of mesh 
i with the adjacent mesh i-1 and i+1, respectively: 
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                                                                                                                                      (A-4) 
 
 
 
                                                                                                                                      (A-5) 
 
 
 
By solving for +

iϕ and −
iϕ  in (A-3) and (A-4) one gets: 

 

ii

iiii
i dd

dd
+
+

=
−

−−−

1

11 ϕϕ
ϕ  

1

11

+

+++

+
+

=
ii

iiii
i dd

dd ϕϕ
ϕ                                                (A-6) 

 
 
If expressions (A-6) for the surface fluxes are used in (A-3) it is obtained: 
 

( ) 11,1,,11,1 +++−−− −++−= iiiiiiiiiii ddddL ϕϕϕ                               (A-7) 
 

where ( )111, /2 +++ +≡ iiiiii ddddd .  The use of (A-7) when integrating (A-1) over the mesh 
i leads to: 
 

( ) ( )[ ] ( ) ( )
( ) ( ) ( )jji

jidjiddjid

iji
ii

f
i
s

iii
ii

f
i
riiiiii

1,02121012

111,1111011,,111,1

,

,1,,1

ϕδχνσλσ

χνσλσ

−+Ψ∆+

=+Ψ−Ψ∆−+++−Ψ− ++−−      (A-8) 

 
The coupling coefficients 1, +iid and iid ,1− have a particular form for the boundary 

meshes, depending on the boundary condition.  For example, if the boundary condition 
for the right boundary (i=N) is: 
 

( ) 02/1 =+ +
+ ii bxaJ ϕ                                                 (A-9) 

 
then  
 

( )2/1+
+ −= ii xJ

b
aϕ                                                (A-10) 

 
Using this expression for +

iϕ to calculate the current at the boundary as expressed in (A-
3), one gets: 
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( )2/1+ixJ = ( ) ( ) iiiiiii
i

ii
i dxJ

b
addD ϕϕϕ

ϕϕ 222
2/ 2/1 +=−−=

∆
−

− +
+

+

          (A-11) 

 
 

                  ( ) i

i

i
i

d
b
a
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21

2
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=+                                                                               (A-12) 

 
The leakage term (A-3) becomes: 
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                                      (A-13) 

 
In this case then (i=N) we have in the leakage term 01, =+iid  and the coefficient of iϕ  in 

the leakage term is ii

i

i d
d

b
a

d
,1

21

2
−+

−
, versus 1,,1 +− + iiii dd for an inner mesh.  
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Appendix B 
 
 

Nodal Equations 
 
 

The two-group diffusion equations to be discretized in slab geometry are shown below: 
 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
'2,1',

''''

gggg

xxxxxxxxxxD gfggfggggggrgg

≠=

++=+∇⋅∇− ϕνσϕνσλχϕσϕσ
  (B-1) 

 
where ϕ  is the scalar flux, λ is the eigenvalue, D is the diffusion coefficient, rσ is the 
removal cross section, χ is the neutron spectrum, gg 'σ  is the scattering cross section 
from group g’ to group g, and fνσ is the product of the number of neutrons per fission 
and the fission cross section, with g as a group index. 
 
The spatial variable x is discretized according to Figure B-1.  Equation (B-1) is integrated 
over the mesh i from 2/1−ix  to 2/1+ix , with ix the center point.  −

iϕ  and −
if are the flux and 

discontinuity factor on the left boundary of mesh i, whereas +
iϕ and +

if have the same 
meaning, but correspond to the right boundary.  The length of mesh i is i∆ , and iϕ  is the 
flux at the center point.  The mesh is chosen such that the material properties are constant 
within the region.  
 
By integrating (B-1) over mesh i one obtaines: 
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The leakage term in Eq. (B-2) can be written as: 
 
                                                                                                                                     (B-3) 

  
 
where J stands for current.  The boundary condition (current continuity and flux 
discontinuity) is expressed by (with the group index dropped for convenience): 
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Figure B-1.  Discretization of the Spatial Variable 
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The surface fluxes corresponding to mesh i are determined from Eqs. (B-4) and (B-5) as: 
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where ( )iii Dd ∆≡ / .  By using Eqs. (B-6) and (B-7) in Eq. (B-3), the leakage term 
becomes: 
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A bilinear shape is considered for the flux within the node: 
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with 1a , 2a , 1b  and 2b constants.  The integral of the flux over mesh i in Eq. (B-2) can be 
written as: 
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The coefficients 1a , 2a , 1b  and 2b  are determined from: 
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By using Eq. (B-12) in Eq. (B-10) one obtains: 
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where 
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is the average flux in mesh i.  Use of (B-8) and (B-13) in (B-2) leads to: 
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where N is the total number of meshes and g a group index.  The expressions for the 
coefficients in Eq. (B-15) for the interior meshes are shown below; in the boundary 
meshes their form depends on the boundary condition imposed. 
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